SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lobov Gleb S.) "

Sökning: WFRF:(Lobov Gleb S.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lobov, Gleb S., et al. (författare)
  • Electric field induced optical anisotropy of P3HT nanofibers in a liquid solution
  • 2015
  • Ingår i: Optical Materials Express. - : Optical Society of America. - 2159-3930 .- 2159-3930. ; 5:11, s. 2642-2647
  • Tidskriftsartikel (refereegranskat)abstract
    • The nanofiber morphology of regioregular Poly-3- hexylthiophene (P3HT) is a 1D crystalline structure organized by π - π stacking of the backbone chains. In this study, we report the impact of electric field on the orientation and optical properties of P3HT nanofibers dispersed in liquid solution. We demonstrate that alternating electric field aligns nanofibers, whereas static electric field forces them to migrate towards the cathode. The alignment of nanofibers introduces anisotropic optical properties, which can be dynamically manipulated until the solvent has evaporated. Time resolved spectroscopic measurements revealed that the electro-optical response time decreases significantly with the magnitude of applied electric field. Thus, for electric field 1.3 V ·μm-1 the response time was measured as low as 20 ms, while for 0.65 V ·μm-1 it was 110-150 ms. Observed phenomenon is the first mention of P3HT supramolecules associated with electrooptical effect. Proposed method provides real time control over the orientation of nanofibers, which is a starting point for a novel practical implementation. With further development P3HT nanofibers can be used individually as an anisotropic solution or as an active component in a guest-host system.
  •  
2.
  • Lobov, Gleb S., et al. (författare)
  • Size Impact of Ordered P3HT Nanofibers on Optical Anisotropy
  • 2016
  • Ingår i: Macromolecular Chemistry and Physics. - : John Wiley & Sons. - 1022-1352 .- 1521-3935. ; 217:9, s. 1089-1095
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline structures with semiconductor properties. When P3HT nanofi bers are dispersed in nonconducting solvent, they react to external alternate electric field by aligning along the field lines. This can be used to create layers of ordered nanofi bers and is referred to as alternating current poling method. P3HT nanofi bers with three different size distributions are fabricated, using self-assembly mechanism in marginal solvents, and used for the alignment studies. Anisotropic absorption of oriented 2 mu m long nanofi bers exponentially increases with the magnitude of applied field to a certain asymptotic limit at 0.8 V mu m(-1), while 100-500 nm long nanofi bers respond to electric field negligibly. Effective optical birefringence of oriented 2 mu m long nanofi bers is calculated, based on the phase shift at 633 nm and the average layer thickness, to be 0.41. These results combined with further studies on real-time control over orientation of P3HT nanofi bers in liquid solution or host system are promising in terms of exploiting them in electroabsorptive and electrorefractive applications.
  •  
3.
  • Lobov, Gleb, et al. (författare)
  • Optical birefringence from P3HT nanofibers in alternating electric field
  • 2016
  • Ingår i: Optics InfoBase Conference Papers. - : OSA - The Optical Society. - 9781943580194
  • Konferensbidrag (refereegranskat)abstract
    • AC poling allowing to control the orientation of P3HT nanofibers, result in strong optical birefringence with promising implementation in a novel type of optical modulator, without necessary embedding into any hosting matrix, e.g. liquid crystal.
  •  
4.
  • Lobov, Gleb S., et al. (författare)
  • Electro-optical response of P3HT nanofibers in liquid solution
  • 2015
  • Ingår i: Asia Communications and Photonics Conference, ACPC 2015. - Washington, D.C. : OSA. - 9781943580064
  • Konferensbidrag (refereegranskat)abstract
    • AC electric poling introduces in P3HT nanofibers anisotropic electro-optical response and birefringence. Along with birefringence, such material exhibits strong amplitude modulation which makes it more efficient alternative to liquid crystals.
  •  
5.
  • Lobov, Gleb S., et al. (författare)
  • Electro-optical response of P3HT nanofibers in liquid solution
  • 2015
  • Ingår i: Asia Communications and Photonics Conference 2015. - : Optical Society of America. - 9781943580064
  • Konferensbidrag (refereegranskat)abstract
    • AC electric poling introduces in P3HT nanofibers anisotropic electro-optical response and birefringence. Along with birefringence, such material exhibits strong amplitude modulation which makes it more efficient alternative to liquid crystals.
  •  
6.
  • Zhao, Yichen, et al. (författare)
  • Electrical Field Induced Alignment of P3HT Nanofibers
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract: Poly 3-hexylthiophene (P3HT) is one of the most studied conjugated polymers for organic solar cell applications due to its light weight, flexible processing methods and low cost fabrication. However, the hole mobility in P3HT is still relatively low compared to that of the inorganic semiconductors, which is one of the main challenges to achieve better performance of organic solar cells. The P3HT nanofibers with aligned by inducing an external electric field have been studied to improve the hole mobility in P3HT nanofibers. Here we present an AC electric field (1.3 V/µm, 50 Hz) induced alignment of P3HT nanofibers with two different lengths. The optical absorption spectra of aligned nanofibers were measured under different polarizations of incident light. The longer nanofibers showed higher dichroic raitos than that of shorter nanofibers, revealing a better alignment pattern. The photoconductivity of non-aligned and aligned P3HT nanofibers were measured and compared, where the aligned P3HT nanofibers showed a ~270% higher dark current than that of non-aligned sample. Moreover, the current measured under the illumination showed ~110% enhancement in the aligned P3HT nanofibers while only ~70% enhancement was obseved in non-aligned nanofibers, revealing that the alignment process have the potential to improve the mobility for optoelectronic applications. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy