SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lochner Michelle) "

Sökning: WFRF:(Lochner Michelle)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alves, Catarina S., et al. (författare)
  • Considerations for Optimizing the Photometric Classification of Supernovae from the Rubin Observatory
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 258:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Vera C. Rubin Observatory will increase the number of observed supernovae (SNe) by an order of magnitude; however, it is impossible to spectroscopically confirm the class for all SNe discovered. Thus, photometric classification is crucial, but its accuracy depends on the not-yet-finalized observing strategy of Rubin Observatory's Legacy Survey of Space and Time (LSST). We quantitatively analyze the impact of the LSST observing strategy on SNe classification using simulated multiband light curves from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). First, we augment the simulated training set to be representative of the photometric redshift distribution per SNe class, the cadence of observations, and the flux uncertainty distribution of the test set. Then we build a classifier using the photometric transient classification library snmachine, based on wavelet features obtained from Gaussian process fits, yielding a similar performance to the winning PLAsTiCC entry. We study the classification performance for SNe with different properties within a single simulated observing strategy. We find that season length is important, with light curves of 150 days yielding the highest performance. Cadence also has an important impact on SNe classification; events with median inter-night gap <3.5 days yield higher classification performance. Interestingly, we find that large gaps (>10 days) in light-curve observations do not impact performance if sufficient observations are available on either side, due to the effectiveness of the Gaussian process interpolation. This analysis is the first exploration of the impact of observing strategy on photometric SN classification with LSST.
  •  
2.
  • Alves, Catarina S., et al. (författare)
  • Impact of Rubin Observatory Cadence Choices on Supernovae Photometric Classification
  • 2023
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 265:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) will discover an unprecedented number of supernovae (SNe), making spectroscopic classification for all the events infeasible. LSST will thus rely on photometric classification, whose accuracy depends on the not-yet-finalized LSST observing strategy. In this work, we analyze the impact of cadence choices on classification performance using simulated multiband light curves. First, we simulate SNe with an LSST baseline cadence, a nonrolling cadence, and a presto-color cadence, which observes each sky location three times per night instead of twice. Each simulated data set includes a spectroscopically confirmed training set, which we augment to be representative of the test set as part of the classification pipeline. Then we use the photometric transient classification library snmachine to build classifiers. We find that the active region of the rolling cadence used in the baseline observing strategy yields a 25% improvement in classification performance relative to the background region. This improvement in performance in the actively rolling region is also associated with an increase of up to a factor of 2.7 in the number of cosmologically useful Type Ia SNe relative to the background region. However, adding a third visit per night as implemented in presto-color degrades classification performance due to more irregularly sampled light curves. Overall, our results establish desiderata on the observing cadence related to classification of full SNe light curves, which in turn impacts photometric SNe cosmology with LSST.
  •  
3.
  • Bianco, Federica B., et al. (författare)
  • Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time : A Pioneering Process of Community-focused Experimental Design
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 258:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey's massive data throughput will be transformational for many other astrophysics domains and Rubin's data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.
  •  
4.
  • Lochner, Michelle, et al. (författare)
  • Optimizing the LSST Observing Strategy for Dark Energy Science : DESC Recommendations for the Wide-Fast-Deep Survey
  • 2018
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Cosmology is one of the four science pillars of LSST, which promises to be transformative for our understanding of dark energy and dark matter. The LSST Dark Energy Science Collaboration (DESC) has been tasked with deriving constraints on cosmological parameters from LSST data. Each of the cosmological probes for LSST is heavily impacted by the choice of observing strategy. This white paper is written by the LSST DESC Observing Strategy Task Force (OSTF), which represents the entire collaboration, and aims to make recommendations on observing strategy that will benefit all cosmological analyses with LSST. It is accompanied by the DESC DDF (Deep Drilling Fields) white paper (Scolnic et al.). We use a variety of metrics to understand the effects of the observing strategy on measurements of weak lensing, large-scale structure, clusters, photometric redshifts, supernovae, strong lensing and kilonovae. In order to reduce systematic uncertainties, we conclude that the current baseline observing strategy needs to be significantly modified to result in the best possible cosmological constraints. We provide some key recommendations: moving the WFD (Wide-Fast-Deep) footprint to avoid regions of high extinction, taking visit pairs in different filters, changing the 2x15s snaps to a single exposure to improve efficiency, focusing on strategies that reduce long gaps (>15 days) between observations, and prioritizing spatial uniformity at several intervals during the 10-year survey.
  •  
5.
  • Lochner, Michelle, et al. (författare)
  • The Impact of Observing Strategy on Cosmological Constraints with LSST
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation-defining Vera C. Rubin Observatory will make state-of-the-art measurements of both the static and transient universe through its Legacy Survey for Space and Time (LSST). With such capabilities, it is immensely challenging to optimize the LSST observing strategy across the survey's wide range of science drivers. Many aspects of the LSST observing strategy relevant to the LSST Dark Energy Science Collaboration, such as survey footprint definition, single-visit exposure time, and the cadence of repeat visits in different filters, are yet to be finalized. Here, we present metrics used to assess the impact of observing strategy on the cosmological probes considered most sensitive to survey design; these are large-scale structure, weak lensing, type Ia supernovae, kilonovae, and strong lens systems (as well as photometric redshifts, which enable many of these probes). We evaluate these metrics for over 100 different simulated potential survey designs. Our results show that multiple observing strategy decisions can profoundly impact cosmological constraints with LSST; these include adjusting the survey footprint, ensuring repeat nightly visits are taken in different filters, and enforcing regular cadence. We provide public code for our metrics, which makes them readily available for evaluating further modifications to the survey design. We conclude with a set of recommendations and highlight observing strategy factors that require further research.
  •  
6.
  • Lucie-Smith, Luisa, et al. (författare)
  • Machine learning cosmological structure formation
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 479:3, s. 3405-3414
  • Tidskriftsartikel (refereegranskat)abstract
    • We train a machine learning algorithm to learn cosmological structure formation from N-body simulations. The algorithm infers the relationship between the initial conditions and the final dark matter haloes, without the need to introduce approximate halo collapse models. We gain insights into the physics driving halo formation by evaluating the predictive performance of the algorithm when provided with different types of information about the local environment around dark matter particles. The algorithm learns to predict whether or not dark matter particles will end up in haloes of a given mass range, based on spherical overdensities. We show that the resulting predictions match those of spherical collapse approximations such as extended Press-Schechter theory. Additional information on the shape of the local gravitational potential is not able to improve halo collapse predictions; the linear density field contains sufficient information for the algorithm to also reproduce ellipsoidal collapse predictions based on the Sheth-Tormen model. We investigate the algorithm's performance in terms of halo mass and radial position and perform blind analyses on independent initial conditions realizations to demonstrate the generality of our results.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy