SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lock John G.) "

Sökning: WFRF:(Lock John G.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kowalewski, Jacob M., et al. (författare)
  • Disentangling Membrane Dynamics and Cell Migration; Differential Influences of F-actin and Cell-Matrix Adhesions
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell migration is heavily interconnected with plasma membrane protrusion and retraction (collectively termed membrane dynamics). This makes it difficult to distinguish regulatory mechanisms that differentially influence migration and membrane dynamics. Yet such distinctions may be valuable given evidence that cancer cell invasion in 3D may be better predicted by 2D membrane dynamics than by 2D cell migration, implying a degree of functional independence between these processes. Here, we applied multi-scale single cell imaging and a systematic statistical approach to disentangle regulatory associations underlying either migration or membrane dynamics. This revealed preferential correlations between membrane dynamics and F-actin features, contrasting with an enrichment of links between cell migration and adhesion complex properties. These correlative linkages were often nonlinear and therefore context-dependent, strengthening or weakening with spontaneous heterogeneity in cell behavior. More broadly, we observed that slow moving cells tend to increase in area, while fast moving cells tend to shrink, and that the size of dynamic membrane domains is independent of cell area. Overall, we define macromolecular features preferentially associated with either cell migration or membrane dynamics, enabling more specific interrogation and targeting of these processes in future.
  •  
2.
  • Lock, John G., et al. (författare)
  • Plasticity in the Macromolecular-Scale Causal Networks of Cell Migration
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:2, s. e90593-
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterogeneous and dynamic single cell migration behaviours arise from a complex multi-scale signalling network comprising both molecular components and macromolecular modules, among which cell-matrix adhesions and F-actin directly mediate migration. To date, the global wiring architecture characterizing this network remains poorly defined. It is also unclear whether such a wiring pattern may be stable and generalizable to different conditions, or plastic and context dependent. Here, synchronous imaging-based quantification of migration systemorganization, represented by 87 morphological and dynamic macromolecular module features, and migration system behaviour, i.e., migration speed, facilitated Granger causality analysis. We thereby leveraged natural cellular heterogeneity to begin mapping the directionally specific causal wiring between organizational and behavioural features of the cell migration system. This represents an important advance on commonly used correlative analyses that do not resolve causal directionality. We identified organizational features such as adhesion stability and adhesion F-actin content that, as anticipated, causally influenced cell migration speed. Strikingly, we also found that cell speed can exert causal influence over organizationalfeatures, including cell shape and adhesion complex location, thus revealing causality in directions contradictory to previous expectations. Importantly, by comparing unperturbed and signalling-modulated cells, we provide proof-of-principle that causal interaction patterns are in fact plastic and context dependent, rather than stable and generalizable.
  •  
3.
  • Lock, John G, et al. (författare)
  • Reticular adhesions are a distinct class of cell-matrix adhesions that mediate attachment during mitosis
  • 2018
  • Ingår i: Nature Cell Biology. - Stockholm : Karolinska Institutet, Dept of Biosciences and Nutrition. - 1465-7392 .- 1476-4679.
  • Tidskriftsartikel (refereegranskat)abstract
    • Adhesion to the extracellular matrix persists during mitosis in most cell types. However, while classical adhesion complexes, such as focal adhesions, do and must disassemble to enable mitotic rounding, the mechanisms of residual mitotic cell-extracellular matrix adhesion remain undefined. Here, we identify 'reticular adhesions', a class of adhesion complex that is mediated by integrin alpha v beta 5, formed during interphase, and preserved at cell-extracellular matrix attachment sites throughout cell division. Consistent with this role, integrin beta 5 depletion perturbs mitosis and disrupts spatial memory transmission between cell generations. Reticular adhesions are morphologically and dynamically distinct from classical focal adhesions. Mass spectrometry defines their unique composition, enriched in phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P-2)-binding proteins but lacking virtually all consensus adhesome components. Indeed, reticular adhesions are promoted by PtdIns(4,5)P-2, and form independently of talin and F-actin. The distinct characteristics of reticular adhesions provide a solution to the problem of maintaining cell-extracellular matrix attachment during mitotic rounding and division.
  •  
4.
  • Spiess, Matthias, et al. (författare)
  • Active and inactive beta 1 integrins segregate into distinct nanoclusters in focal adhesions
  • 2018
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 217:6, s. 1929-1940
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive beta 1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive beta 1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy