SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lockton J. A.) "

Sökning: WFRF:(Lockton J. A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stephenson, M C, et al. (författare)
  • Variability in fasting lipid and glycogen contents in hepatic and skeletal muscle tissue in subjects with and without type 2 diabetes : a 1H and 13C MRS study
  • 2013
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 26:11, s. 1518-1526
  • Tidskriftsartikel (refereegranskat)abstract
    • The measurement of tissue lipid and glycogen contents and the establishment of normal levels of variability are important when assessing changes caused by pathology or treatment. We measured hepatic and skeletal muscle lipid and glycogen levels using 1H and 13C MRS at 3 T in groups of subjects with and without type 2 diabetes. Within-visit reproducibility, due to repositioning and instrument errors was determined from repeat measurements made over 1 h. Natural variability was assessed from separate measurements made on three occasions over 1 month. Hepatic lipid content was greater in subjects with diabetes relative to healthy subjects (p = 0.03), whereas levels of hepatic and skeletal muscle glycogen, and of intra- and extra-myocellular lipid, were similar. The single-session reproducibility values (coefficient of variation, CV) for hepatic lipid content were 12% and 7% in groups of subjects with and without diabetes, respectively. The variability of hepatic lipid content over 1 month was greater than the reproducibility, with CV = 22% (p = 0.08) and CV = 44% (p = 0.004) in subjects with and without diabetes, respectively. Similarly, levels of variation in basal hepatic glycogen concentrations (subjects with diabetes, CV = 38%; healthy volunteers, CV = 35%) were significantly larger than single-session reproducibility values (CV = 17%, p = 0.02 and CV = 13%, p = 0.05, respectively), indicating substantial biological changes in basal concentrations over 1 month. There was a decreasing correlation in measurements of both hepatic lipid and glycogen content with increasing time between scans. Levels of variability in intra- and extra-myocellular lipid in the soleus muscle, and glycogen concentrations in the gastrocnemius muscle, tended to be larger than expected from single-session reproducibility, although these did not reach significance.
  •  
2.
  • Ruge, T., et al. (författare)
  • Acute hyperinsulinemia raises plasma interleukin-6 in both nondiabetic and type 2 diabetes mellitus subjects, and this effect is inversely associated with body mass index
  • 2009
  • Ingår i: Metabolism. - 1532-8600 .- 1532-8600. ; 58:6, s. 860-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperinsulinemia is a characteristic of type 2 diabetes mellitus (T2DM) and is believed to play a role in the low-grade inflammation seen in T2DM. The main aim was to study the effect of hyperinsulinemia on adipokines in individuals with different levels of insulin resistance, glycemia, and obesity. Three groups of sex-matched subjects were studied: young healthy subjects (YS; n = 10; mean age, 26 years; body mass index [BMI], 22 kg/m(2)), patients with T2DM (DS; n = 10; 61 years; BMI, 27 kg/m(2)), and age- and BMI-matched controls to DS (CS; n = 10; 60 years; BMI, 27 kg/m(2)). Plasma concentrations of adipokines were measured during a hyperinsulinemic euglycemic clamp lasting 4 hours. Moreover, insulin-stimulated glucose uptake in isolated adipocytes was analyzed to address adipose tissue insulin sensitivity. Plasma interleukin (IL)-6 increased significantly (P < or = .01) in all 3 groups during hyperinsulinemia. However, the increase was smaller in both DS (P = .06) and CS (P < .05) compared with YS (approximately 2.5-fold vs approximately 4-fold). A significant increase of plasma tumor necrosis factor (TNF) alpha was observed only in YS. There were only minor or inconsistent effects on adiponectin, leptin, and high-sensitivity C-reactive protein levels during hyperinsulinemia. Insulin-induced rise in IL-6 correlated negatively to BMI (P = .001), waist to hip ratio (P = .05), and baseline (fasting) insulin (P = .03) and IL-6 (P = .02) levels and positively to insulin-stimulated glucose uptake in isolated adipocytes (P = .07). There was no association with age or insulin sensitivity. In a multivariate analysis, also including T2DM/no T2DM, an independent correlation (inverse) was found only between BMI and fold change of IL-6 (r(2) = 0.41 for model, P < .005). Hyperinsulinemia per se can produce an increase in plasma IL-6 and TNFalpha, and this can potentially contribute to the low-grade inflammation seen in obesity and T2DM. However, obesity seems to attenuate the ability of an acute increase in insulin to further raise circulating levels of IL-6 and possibly TNFalpha.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy