SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lodge P) "

Search: WFRF:(Lodge P)

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Crous, P. W., et al. (author)
  • Fungal Planet description sheets : 951-1041
  • 2019
  • In: Persoonia. - : RIJKSHERBARIUM. - 0031-5850 .- 1878-9080. ; 43, s. 223-425
  • Journal article (peer-reviewed)abstract
    • Novel species of fungi described in this study include those from various countries as follows: Antarctica,Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina,Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera,Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbiaficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy onrotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae(incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannacciifrom pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongisporaon resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma cavernafrom carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. CostaRica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambiguaand Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood.Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracyllagen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyriumviticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiaeon Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum fromsaline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostromaencephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots ofEucalyptus grandis x urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficiumon leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter ofEugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl.Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladiumeucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp.macrocarpa, Harzia metro-sideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamycesgen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosilliamayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloesp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesiastrelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam.nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicilliumcuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpusfalcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi,Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidiumblechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomycesknysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood ingoldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycinacortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensison dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litterof Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris.Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis onleaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomycesjuncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomycesmelaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides x lanceolata, Pseudocamarosporiumeucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascusturneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii onleaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological andculture characteristics are supported by DNA barcodes.
  •  
3.
  • Schoch, Conrad L., et al. (author)
  • Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi
  • 2014
  • In: Database: The Journal of Biological Databases and Curation. - : Oxford University Press (OUP). - 1758-0463. ; 2014:bau061, s. 1-21
  • Journal article (peer-reviewed)abstract
    • DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.
  •  
4.
  • Zamora, Juan Carlos, et al. (author)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • In: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Journal article (peer-reviewed)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
5.
  •  
6.
  • Engstrand, J., et al. (author)
  • Liver resection and ablation for squamous cell carcinoma liver metastases
  • 2021
  • In: BJS Open. - Oxford, United Kingdom : Oxford University Press. - 2474-9842. ; 5:4
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Limited evidence exists to guide the management of patients with liver metastases from squamous cell carcinoma (SCC). The aim of this retrospective multicentre cohort study was to describe patterns of disease recurrence after liver resection/ablation for SCC liver metastases and factors associated with recurrence-free survival (RFS) and overall survival (OS).METHOD: Members of the European-African Hepato-Pancreato-Biliary Association were invited to include all consecutive patients undergoing liver resection/ablation for SCC liver metastases between 2002 and 2019. Patient, tumour and perioperative characteristics were analysed with regard to RFS and OS.RESULTS: Among the 102 patients included from 24 European centres, 56 patients had anal cancer, and 46 patients had SCC from other origin. RFS in patients with anal cancer and non-anal cancer was 16 and 9 months, respectively (P = 0.134). A positive resection margin significantly influenced RFS for both anal cancer and non-anal cancer liver metastases (hazard ratio 6.82, 95 per cent c.i. 2.40 to 19.35, for the entire cohort). Median survival duration and 5-year OS rate among patients with anal cancer and non-anal cancer were 50 months and 45 per cent and 21 months and 25 per cent, respectively. For the entire cohort, only non-radical resection was associated with worse overall survival (hazard ratio 3.21, 95 per cent c.i. 1.24 to 8.30).CONCLUSION: Liver resection/ablation of liver metastases from SCC can result in long-term survival. Survival was superior in treated patients with liver metastases from anal versus non-anal cancer. A negative resection margin is paramount for acceptable outcome.
  •  
7.
  •  
8.
  • Lodge, D.J., et al. (author)
  • Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)
  • 2014
  • In: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 64, s. 1-99
  • Journal article (peer-reviewed)abstract
    • Molecular phylogenies using 1–4 gene regions and information on ecology, morphology and pigment chemistry were used in a partial revision of the agaric family Hygro- phoraceae. The phylogenetically supported genera we recognize here in the Hygrophoraceae based on these and previous analyses are: Acantholichen, Ampulloclitocybe, Arrhenia, Cantharellula, Cantharocybe, Chromosera, Chrysomphalina, Cora, Corella, Cuphophyllus, Cyphellostereum, Dictyonema, Eonema, Gliophorus, Haasiella, Humidicutis, Hygroaster, Hygrocybe, Hygrophorus, Lichenomphalia, Neohygrocybe, Porpolomopsis and Pseudoarmillariella. A new genus that is sister to Chromosera is described as Gloioxanthomyces. Revisions were made at the ranks of subfamily, tribe, genus, subgenus, section and subsection. We present three new subfamilies, eight tribes (five new), eight subgenera (one new, one new combination and one stat. nov.), 26 sections (five new and three new combinations and two stat. nov.) and 14 subsections (two new, two stat. nov.). Species of Chromosera, Gliophorus, Humidicutis, and Neohygrocybe are often treated within the genus Hygrocybe; we therefore provide valid names in both classification systems. We used a minimalist approach in transferring genera and creating new names and combinations. Consequently, we retain in the Hygrophoraceae the basal cuphophylloid grade comprising the genera Cuphophyllus, Ampulloclitocybe and Cantharocybe, despite weak phylogenetic support. We include Aeruginospora and Semiomphalina in Hygrophoraceae based on morphology though molecular data are lacking. The lower hygrophoroid clade is basal to Hygrophoraceae s.s., comprising the genera Aphroditeola, Macrotyphula, Phyllotopsis, Pleurocybella, Sarcomyxa, Tricholomopsis and Typhula.
  •  
9.
  • Mueller, G. M., et al. (author)
  • Global diversity and distribution of macrofungi
  • 2007
  • In: Biodiversity and Conservation. - 0960-3115. ; 16:1, s. 37-48
  • Journal article (peer-reviewed)abstract
    • Data on macrofungal diversity and distribution patterns were compiled for major geographical regions of the world. Macrofungi are defined here to include ascomycetes and basidiomycetes with large, easily observed spore-bearing structures that form above or below ground. Each coauthor either provided data on a particular taxonomic group of macrofungi or information on the macrofungi of a specific geographic area. We then employed a meta-analysis to investigate species overlaps between areas, levels of endemism, centers of diversity, and estimated percent of species known for each taxonomic group for each geographic area and for the combined macrofungal data set. Thus, the study provides both a meta-analysis of current data and a gap assessment to help identify research needs. In all, 21,679 names of macrofungi were compiled. The percentage of unique names for each region ranged from 37% for temperate Asia to 72% for Australasia. Approximately 35,000 macrofungal species were estimated to be "unknown" by the contributing authors. This would give an estimated total of 56,679 macrofungi. Our compiled species list does not include data from most of S.E. Europe, Africa, western Asia, or tropical eastern Asia. Even so, combining our list of names with the estimates from contributing authors is in line with our calculated estimate of between 53,000 and 110,000 macrofungal species derived using plant/macrofungal species ratio data. The estimates developed in this study are consistent with a hypothesis of high overall fungal species diversity.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16
Type of publication
journal article (15)
conference paper (1)
Type of content
peer-reviewed (12)
other academic/artistic (4)
Author/Editor
Line, PD (3)
Lodge, P (3)
Lodge, D. J. (3)
Erdmann, J. (2)
Larsson, Ellen, 1961 (2)
Kõljalg, Urmas (2)
show more...
Larsson, Karl-Henrik ... (2)
Ericzon, BG (2)
Zieniewicz, K (2)
Adam, R. (2)
Di Martino, M. (2)
Karam, V (2)
Mirza, D (2)
Bennet, W (2)
Grat, M (2)
Johannessen, A. (2)
Benediktsdottir, B. (2)
Bråbäck, Lennart (2)
Forsberg, Bertil (2)
Schlunssen, V. (2)
Svanes, C. (2)
Bertelsen, R. J. (2)
Sanchez-Ramos, J. L. (2)
Belli, A (2)
Izzo, F (2)
Lodge, C. (2)
Gislason, T. (2)
Holm, M. (2)
Sigsgaard, T. (2)
Chen, Jie (2)
Grube, Martin (2)
Zock, J. P. (2)
Miller, Andrew N. (2)
Serrablo, A (2)
Buyck, Bart (2)
Yaqub, S (2)
Hansen, Karen (2)
Benke, G (2)
Zamora, Juan Carlos (2)
Boekhout, Teun (2)
Crespo, Ana (2)
Smith, M. E. (2)
Crous, Pedro W. (2)
Gueidan, Cecile (2)
Gimenez-Maurel, T. (2)
Kron, P. (2)
Lehwald-Tywuschik, N ... (2)
Machairas, N. (2)
Stenroos, Soili (2)
Olariaga, Ibai (2)
show less...
University
University of Gothenburg (8)
Karolinska Institutet (6)
Uppsala University (5)
Umeå University (4)
Lund University (2)
Swedish Museum of Natural History (2)
show more...
Royal Institute of Technology (1)
Linköping University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (16)
Research subject (UKÄ/SCB)
Natural sciences (6)
Medical and Health Sciences (5)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view