SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lohmann Rainer) "

Sökning: WFRF:(Lohmann Rainer)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benskin, Jonathan, et al. (författare)
  • Manufacturing Origin of Perfluorooctanoate (PFOA) in Atlantic and Canadian Arctic Seawater
  • 2012
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 46:2, s. 677-685
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which different manufacturing sources and long-range transport pathways contribute to perfluorooctanoate (PFOA) in the world’s oceans, particularly in remote locations, is widely debated. Here, the relative contribution of historic (i.e., electrochemically fluorinated) and contemporary (i.e., telomer) manufacturing sources was assessed for PFOA in various seawater samples by an established isomer profiling technique. The ratios of individual branched PFOA isomers were indistinguishable from those in authentic historic standards in 93% of the samples examined, indicating that marine processes had little influence on isomer profiles, and that isomer profiling is a valid source apportionment tool for seawater. Eastern Atlantic PFOA was largely (83−98%) of historic origin, but this decreased to only 33% close to the Eastern U.S. seaboard. Similarly, PFOA in the Norwegian Sea was near exclusively historic, but the relative contribution decreased to ∼50% near the Baltic Sea. Such observations of contemporary PFOA in coastal source regions coincided with elevated concentrations, suggesting that the continued production and use of PFOA is currently adding to the marine burden of this contaminant. In the Arctic, a spatial trend was observed whereby PFOA in seawater originating from the Atlantic was predominantly historic (up to 99%), whereas water in the Archipelago (i.e., from the Pacific) was predominantly of contemporary origin (as little as 17% historic). These data help to explain reported temporal and spatial trends from Arctic wildlife biomonitoring, and suggest that the dominant PFOA source(s) to the Pacific and Canadian Arctic Archipelago are either (a) from direct emissions of contemporary PFOA via manufacturing or use in Asia, or (b) from atmospheric transport and oxidation of contemporary PFOA-precursors.
  •  
2.
  • Benskin, Jonathan P., et al. (författare)
  • Perfluoroalkyl Acids in the Atlantic and Canadian Arctic Oceans
  • 2012
  • Ingår i: Environmental Science and Technology. - : American Chemical Society. - 0013-936X .- 1520-5851. ; 46:11, s. 5815-5823
  • Tidskriftsartikel (refereegranskat)abstract
    • We report here on the spatial distribution of C-4, C-6, and C-8 perfluoroalkyl sulfonates, C-6-C-14 perfluoroalkyl carboxylates, and perfluorooctanesulfonamide in the Atlantic and Arctic Oceans, including previously unstudied coastal waters of North and South America, and the Canadian Arctic Archipelago. Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were typically the dominant perfluoroalkyl acids (PFAAs) in Atlantic water. In the midnorthwest Atlantic/Gulf Stream, sum PFAA concentrations (Sigma PFAAs) were low (77-190 pg/L) but increased rapidly upon crossing into U.S. coastal water (up to 5800 pg/L near Rhode Island). Sigma PFAAs in the northeast Atlantic were highest north of the Canary Islands (280-980 pg/L) and decreased with latitude. In the South Atlantic, concentrations increased near Rio de la Plata (Argentina/Uruguay; 350-540 pg/L Sigma PFAAs), possibly attributable to insecticides containing N-ethyl perfluorooctanesulfonamide, or proximity to Montevideo and Buenos Aires. In all other southern hemisphere locations, Sigma PFAAs were less than210 pg/L. PFOA/PFOS ratios were typically greater than= 1 in the northern hemisphere, similar to 1 near the equator, and less than= 1 in the southern hemisphere. In the Canadian Arctic, Sigma PFAAs ranged from 40 to 250 pg/L, with perfluoroheptanoate, PFOA, and PFOS among the PFAAs detected at the highest concentrations. PFOA/PFOS ratios (typically greater thangreater than1) decreased from Baffin Bay to the Amundsen Gulf; possibly attributable to increased atmospheric inputs. These data help validate global emissions models and contribute to understanding of long-range transport pathways and sources of PFAAs to remote regions.
  •  
3.
  • Bidleman, Terry F., et al. (författare)
  • Lake Superior Has Lost over 90% of Its Pesticide HCH Load since 1986
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:14, s. 9518-9526
  • Tidskriftsartikel (refereegranskat)abstract
    • The time trend of α- and γ-hexachlorocyclohexane (HCH) isomers in Lake Superior water was followed from 1986 to 2016, the longest record for any persistent organic pollutant (POP) in Great Lakes water. Dissipation of α-HCH and γ-HCHs was first order, with halving times (t1/2) of 5.7 and 8.5 y, respectively. Loss rates were not significantly different starting a decade later (1996−2016). Concentrations of β-HCH were followed from 1996−2016 and dissipated more slowly (t1/2 = 16 y). In 1986, the lake contained an estimated 98.8 tonnes of α-HCH and 13.2 tonnes of γ-HCH; by 2016, only 2.7% and 7.9% of 1986 quantities remained. Halving times of both isomers in water were longer than those reported in air, and for γ-HCH, they were longer in water than those reported in lake trout. Microbial degradation was evident by enantioselective depletion of (+)α-HCH, which increased from 1996 to 2011. Volatilization was the main removal process for both isomers, followed by degradation (hydrolytic and microbial) and outflow through the St. Mary’s River. Sedimentation was minor. Major uncertainties in quantifying removal processes were in the two-film model for predicting volatilization and in microbial degradation rates. The study highlights the value of long-term monitoring of chemicals in water to interpreting removal processes and trends in biota.
  •  
4.
  • Cousins, Ian T., et al. (författare)
  • Finding essentiality feasible : common questions and misinterpretations concerning the "essential-use" concept
  • 2021
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 23:8, s. 1079-1087
  • Forskningsöversikt (refereegranskat)abstract
    • The essential-use concept is a tool that can guide the phase-out of per- and polyfluoroalkyl substances (PFAS) and potentially other substances of concern. This concept is a novel approach to chemicals management that determines whether using substances of concern, such as PFAS, is truly essential for a given functionality. To assess the essentiality of a particular use case, three considerations need to be addressed: (1) the function (chemical, end use and service) that the chemical provides in the use case, (2) whether the function is necessary for health and safety and critical for the functioning of society and (3) if the function is necessary, whether there are viable alternatives for the chemical for this particular use. A few illustrative examples of the three-step process are provided for use cases of PFAS. The essential-use concept takes chemicals management away from a substance-by-substance approach to a group approach. For PFAS and other substances of concern, it offers a more rapid pathway toward effective management or phase-out. Parts of the concept of essential use have already been widely applied in global treaties and international regulations and it has also been recently used by product manufacturers and retailers to phase out substances of concern from supply chains. Herein some of the common questions and misinterpretations regarding the practical application of the essential-use concept are reviewed, and answers and further clarifications are provided.
  •  
5.
  • Cousins, Ian T., et al. (författare)
  • Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health
  • 2020
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 22:7, s. 1444-1460
  • Forskningsöversikt (refereegranskat)abstract
    • Grouping strategies are needed for per- and polyfluoroalkyl substances (PFAS), in part, because it would be time and resource intensive to test and evaluate the more than 4700 PFAS on the global market on a chemical-by-chemical basis. In this paper we review various grouping strategies that could be used to inform actions on these chemicals and outline the motivations, advantages and disadvantages for each. Grouping strategies are subdivided into (1) those based on the intrinsic properties of the PFAS (e.g.persistence, bioaccumulation potential, toxicity, mobility, molecular size) and (2) those that inform risk assessment through estimation of cumulative exposure and/or effects. The most precautionary grouping approach of those reviewed within this article suggests phasing out PFAS based on their high persistence alone (the so-called P-sufficient approach). The least precautionary grouping approach reviewed advocates only grouping PFAS for risk assessment that have the same toxicological effects, modes and mechanisms of action, and elimination kinetics, which would need to be well documented across different PFAS. It is recognised that, given jurisdictional differences in chemical assessment philosophies and methodologies, no one strategy will be generally acceptable. The guiding question we apply to the reviewed grouping strategies is: grouping for what purpose? The motivation behind the grouping (e.g.determining use in productsvs.setting guideline levels for contaminated environments) may lead to different grouping decisions. This assessment provides the necessary context for grouping strategies such that they can be adopted as they are, or built on further, to protect human and environmental health from potential PFAS-related effects.
  •  
6.
  • Cousins, Ian T., et al. (författare)
  • The concept of essential use for determining when uses of PFASs can be phased out
  • 2019
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 21:11, s. 1803-1815
  • Forskningsöversikt (refereegranskat)abstract
    • Because of the extreme persistence of per- and polyfluoroalkyl substances (PFASs) and their associated risks, the Madrid Statement argues for stopping their use where they are deemed not essential or when safer alternatives exist. To determine when uses of PFASs have an essential function in modern society, and when they do not, is not an easy task. Here, we: (1) develop the concept of essential use based on an existing approach described in the Montreal Protocol, (2) apply the concept to various uses of PFASs to determine the feasibility of elimination or substitution of PFASs in each use category, and (3) outline the challenges for phasing out uses of PFASs in society. In brief, we developed three distinct categories to describe the different levels of essentiality of individual uses. A phase-out of many uses of PFASs can be implemented because they are not necessary for the betterment of society in terms of health and safety, or because functional alternatives are currently available that can be substituted into these products or applications. Some specific uses of PFASs would be considered essential because they provide for vital functions and are currently without established alternatives. However, this essentiality should not be considered as permanent; rather, constant efforts are needed to search for alternatives. We provide a description of several ongoing uses of PFASs and discuss whether these uses are essential or non-essential according to the three essentiality categories. It is not possible to describe each use case of PFASs in detail in this single article. For follow-up work, we suggest further refining the assessment of the use cases of PFASs covered here, where necessary, and expanding the application of this concept to all other uses of PFASs. The concept of essential use can also be applied in the management of other chemicals, or groups of chemicals, of concern.
  •  
7.
  • Cousins, Ian T., et al. (författare)
  • The high persistence of PFAS is sufficient for their management as a chemical class
  • 2020
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 22:12, s. 2307-2312
  • Forskningsöversikt (refereegranskat)abstract
    • Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all non-essential uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources.
  •  
8.
  • Diamond, Miriam, et al. (författare)
  • Exploring the planetary boundary for chemical pollution
  • 2015
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 78, s. 8-15
  • Forskningsöversikt (refereegranskat)abstract
    • Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if “unacceptable global change” is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social approaches to mitigate global chemical pollution that emphasize a preventative approach; coordinate pollution control and sustainability efforts; and facilitate implementation of multiple (and potentially decentralized) control efforts involving scientists, civil society, government, non-governmental organizations and international bodies.
  •  
9.
  • Ebinghaus, Ralf, et al. (författare)
  • Berlin statement on legacy and emerging contaminants in polar regions
  • 2023
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Polar regions should be given greater consideration with respect to the monitoring, risk assessment, and management of potentially harmful chemicals, consistent with requirements of the precautionary principle. Protecting the vulnerable polar environments requires (i) raising political and public awareness and (ii) restricting and preventing global emissions of harmful chemicals at their sources. The Berlin Statement is the outcome of an international workshop with representatives of the European Commission, the Arctic Council, the Antarctic Treaty Consultative Meeting, the Stockholm Convention on Persistent Organic Pollutants (POPs), environmental specimen banks, and data centers, as well as scientists from various international research institutions. The statement addresses urgent chemical pollution issues in the polar regions and provides recommendations for improving screening, monitoring, risk assessment, research cooperation, and open data sharing to provide environmental policy makers and chemicals management decision-makers with relevant and reliable contaminant data to better protect the polar environments. The consensus reached at the workshop can be summarized in just two words: “Act now!”Specifically, “Act now!” to reduce the presence and impact of anthropogenic chemical pollution in polar regions by.•Establishing participatory co-development frameworks in a permanent multi-disciplinary platform for Arctic-Antarctic collaborations and establishing exchanges between the Arctic Monitoring and Assessment Program (AMAP) of the Arctic Council and the Antarctic Monitoring and Assessment Program (AnMAP) of the Scientific Committee on Antarctic Research (SCAR) to increase the visibility and exchange of contaminant data and to support the development of harmonized monitoring programs.•Integrating environmental specimen banking, innovative screening approaches and archiving systems, to provide opportunities for improved assessment of contaminants to protect polar regions.
  •  
10.
  • Glüge, Juliane, et al. (författare)
  • An overview of the uses of per- and polyfluoroalkyl substances (PFAS)
  • 2020
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 22:12, s. 2345-2373
  • Tidskriftsartikel (refereegranskat)abstract
    • Per- and polyfluoroalkyl substances (PFAS) are of concern because of their high persistence (or that of their degradation products) and their impacts on human and environmental health that are known or can be deduced from some well-studied PFAS. Currently, many different PFAS (on the order of several thousands) are used in a wide range of applications, and there is no comprehensive source of information on the many individual substances and their functions in different applications. Here we provide a broad overview of many use categories where PFAS have been employed and for which function; we also specify which PFAS have been used and discuss the magnitude of the uses. Despite being non-exhaustive, our study clearly demonstrates that PFAS are used in almost all industry branches and many consumer products. In total, more than 200 use categories and subcategories are identified for more than 1400 individual PFAS. In addition to well-known categories such as textile impregnation, fire-fighting foam, and electroplating, the identified use categories also include many categories not described in the scientific literature, including PFAS in ammunition, climbing ropes, guitar strings, artificial turf, and soil remediation. We further discuss several use categories that may be prioritised for finding PFAS-free alternatives. Besides the detailed description of use categories, the present study also provides a list of the identified PFAS per use category, including their exact masses for future analytical studies aiming to identify additional PFAS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (20)
forskningsöversikt (6)
konferensbidrag (1)
Typ av innehåll
refereegranskat (25)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Lohmann, Rainer (27)
Scheringer, Martin (14)
Wang, Zhanyun (10)
Herzke, Dorte (8)
Goldenman, Gretta (8)
Glüge, Juliane (7)
visa fler...
Ng, Carla A. (7)
Cousins, Ian T. (6)
Trier, Xenia (6)
DeWitt, Jamie C. (6)
Miller, Mark (5)
Suzuki, Noriyuki (5)
Patton, Sharyle (5)
Backhaus, Thomas, 19 ... (4)
Muir, Derek (4)
Vrana, Branislav (3)
Cousins, Ian (3)
Klánová, Jana (3)
Vighi, Marco (3)
Jantunen, Liisa (3)
Bidleman, Terry F. (3)
Diamond, Miriam L (3)
Smedes, Foppe (3)
Grimalt, Joan O. (3)
Schäffer, Andreas (3)
Diamond, Miriam (3)
Holoubek, Ivan (3)
Venier, Marta (3)
Molander, Sverker, 1 ... (2)
Kylin, Henrik (2)
Arvidsson, Rickard, ... (2)
Tysklind, Mats (2)
Bergman, Åke (2)
Allan, Ian J. (2)
Kaserzon, Sarit (2)
Kukucka, Petr, 1982- (2)
Persson, Linn (2)
Spencer, Christine (2)
Rosenberg, Bruno (2)
Tomy, Gregg (2)
Ågerstrand, Marlene (2)
Bidleman, Terry (2)
Vlahos, Penny (2)
Wong, Charles S. (2)
Wang, Fang (2)
Weber, Roland (2)
Vierke, Lena (2)
Zeng, Eddy Y. (2)
Sobotka, Jaromir (2)
Bao, Lian-Jun (2)
visa färre...
Lärosäte
Stockholms universitet (14)
Göteborgs universitet (5)
Umeå universitet (5)
Örebro universitet (5)
Linköpings universitet (2)
Chalmers tekniska högskola (2)
visa fler...
Lunds universitet (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (27)
Teknik (4)
Lantbruksvetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy