SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lohne T.) "

Sökning: WFRF:(Lohne T.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krivov, A., et al. (författare)
  • HERSCHEL's "COLD DEBRIS DISKS": BACKGROUND GALAXIES OR QUIESCENT RIMS OF PLANETARY SYSTEMS?
  • 2013
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 772:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around similar to 100 mu m or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant-and in some cases extended-excess emission at 160 mu m, which is larger than the 100 mu m excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than similar to 100 mu m, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.
  •  
2.
  • Caspari, Synnove, et al. (författare)
  • Tension between freedom and dependence : A challenge for residents who live in nursing homes
  • 2018
  • Ingår i: Journal of Clinical Nursing. - : John Wiley & Sons. - 0962-1067 .- 1365-2702. ; 27:21-22, s. 4119-4127
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims and objectives To present results from interviews of older people living in nursing homes, on how they experience freedom. Background We know that freedom is an existential human matter, and research shows that freedom remains important throughout life. Freedom is also important for older people, but further research is needed to determine how these people experience their freedom. The background for this article was a Scandinavian study that occurred in nursing homes; the purpose of the study was to gain knowledge about whether the residents felt that their dignity was maintained and respected. Design The design was hermeneutic, with qualitative research interviews. MethodTwenty-eight residents living in nursing homes in Denmark, Sweden and Norway were interviewed. Collecting tools used were an interview guide and also a tape recorder. Researchers in the three countries performed the interviews. The data were transcribed and analysed on three levels of hermeneutic interpretation. Results To have their freedom was emphasised as very important according to their experience of having their dignity taken care of. The following main themes emerged: (a) Autonomy or paternalism; (b) Inner and outer freedom; and (c) Dependence as an extra burden. ConclusionsResidents in a nursing home may experience the feeling of having lost their freedom. This conclusion has implications for healthcare professionals and researchers, as it is important for residents in nursing homes to feel that they still have their freedom. Relevance to clinical practiceIn clinical practice, it is important and valuable for the staff to consider how they can help older people feel that they still have their freedom.
  •  
3.
  • Ertel, S., et al. (författare)
  • A peculiar class of debris disks from Herschel/DUNES - A steep fall off in the far infrared
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 541
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims. We present photometric data of debris disks around HIP 103389 (HD199260), HIP 107350 (HNPeg, HD206860), and HIP 114948 (HD219482), obtained in the context of our Herschel open time key program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3 sigma sensitivity of a few mJy at 100 mu m and 160 mu m. In addition, we obtained Herschel/PACS photometric data at 70 mu m for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated thermal annealing as well as a classical grid search method. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths >= 70 mu m. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented.
  •  
4.
  • Ertel, S., et al. (författare)
  • Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 561, s. Article no. A114-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims. Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods. We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results. A standard single component disk model fails to reproduce the major axis radial profiles at 70 mu m, 100 mu m, and 160 mu m simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions. The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust.
  •  
5.
  •  
6.
  • Liseau, René, 1949, et al. (författare)
  • Resolving the cold debris disc around a planet-hosting star. PACS photometric imaging observations of q1 Eridani (HD 10647, HR 506)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L132
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions and spiral patterns. In most cases, these features are believed to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. Aims. The solar-type star q(1) Eri is known to be surrounded by debris, extended on scales of less than or similar to 30 ''. The star is also known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. Methods. The Photodetector Array Camera and Spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6 '' to 12 '' over the wavelength range of 60 mu m to 210 mu m. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than what would be possible from unresolved data alone. Results. For the first time has the q(1) Eri disc been resolved at far infrared wavelengths. The PACS observations at 70 mu m, 100 mu m and 160 mu m reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53 degrees. The results of image de-convolution indicate that i likely is larger than 63 degrees, where 90 degrees corresponds to an edge-on disc. Conclusions. The observed emission is thermal and optically thin. The resolved data are consistent with debris at temperatures below 30 K at radii larger than 120 AU. From image de-convolution, we find that q(1) Eri is surrounded by an about 40 AU wide ring at the radial distance of similar to 85 AU. This is the first real Edgeworth-Kuiper Belt analogue ever observed.
  •  
7.
  •  
8.
  • Lohne, V, et al. (författare)
  • Fostering dignity in the care of nursing home residents through slow caring
  • 2017
  • Ingår i: Nursing ethics. - : SAGE Publications. - 1477-0989 .- 0969-7330. ; 24:7, s. 778-788
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical impairment and dependency on others may be a threat to dignity. Research questions: The purpose of this study was to explore dignity as a core concept in caring, and how healthcare personnel focus on and foster dignity in nursing home residents. Research design: This study has a hermeneutic design. Participants and research context: In all, 40 healthcare personnel from six nursing homes in Scandinavia participated in focus group interviews in this study. Ethical considerations: This study has been evaluated and approved by the Regional Ethical Committees and the Social Science Data Services in the respective Scandinavian countries. Findings: Two main themes emerged: dignity as distinction (I), and dignity as influence and participation (II). Discussion: A common understanding was that stress and business was a daily challenge. Conclusion: Therefore, and according to the health personnel, maintaining human dignity requires slow caring in nursing homes, as an essential approach.
  •  
9.
  • Marshall, J. P., et al. (författare)
  • A Herschel resolved far-infrared dust ring around HD 207129
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 529
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Dusty debris discs around main sequence stars are thought to be the result of continuous collisional grinding of planetesimals in the system. The majority of these systems are unresolved and analysis of the dust properties is limited by the lack of information regarding the dust location. Aims. The Herschel DUNES key program is observing 133 nearby, Sun-like stars (
  •  
10.
  • Marshall, J. P., et al. (författare)
  • Herschel observations of the debris disc around HIP 92043
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 557
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Typical debris discs are composed of particles ranging from several micron sized dust grains to km sized asteroidal bodies, and their infrared emission peaks at wavelengths 60-100 mu m. Recent Herschel DUNES observations have identified several debris discs around nearby Sun-like stars (F, G and K spectral type) with significant excess emission only at 160 mu m.Aims. We observed HIP 92043 (110 Her, HD 173667) at far-infrared and sub-millimetre wavelengths with Herschel PACS and SPIRE. Identification of the presence of excess emission from HIP 92043 and the origin and physical properties of any excess was undertaken through analysis of its spectral energy distribution (SED) and the PACS images.Methods. The PACS and SPIRE images were produced using the HIPE photProject map maker routine. Fluxes were measured using aperture photometry. A stellar photosphere model was scaled to optical and near infrared photometry and subtracted from the far-infared and sub-mm fluxes to determine the presence of excess emission. Source radial profiles were fitted using a 2D Gaussian and compared to a PSF model based on Herschel observations of alpha Boo to check for extended emission.Results. Clear excess emission from HIP 92043 was observed at 70 and 100 mu m. Marginal excess was observed at 160 and 250 mu m. Analysis of the images reveals that the source is extended at 160 mu m. A fit to the source SED is inconsistent with a photosphere and single temperature black body.Conclusions. The excess emission from HIP 92043 is consistent with the presence of an unresolved circumstellar debris disc at 70 and 100 mu m, with low probability of background contamination. The extended 160 mu m emission may be interpreted as an additional cold component to the debris disc or as the result of background contamination along the line of sight. The nature of the 160 mu m excess cannot be determined absolutely from the available data, but we favour a debris disc interpretation, drawing parallels with previously identified cold disc sources in the DUNES sample.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy