SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lombaert E.) "

Sökning: WFRF:(Lombaert E.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Decin, L., et al. (författare)
  • Warm water vapour in the sooty outflow from a luminous carbon star
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 467:7311, s. 64-67
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection(1) of circumstellar water vapour around the ageing carbon star IRC + 10216 challenged the current understanding of chemistry in old stars, because water was predicted(2) to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star(1), grain surface reactions(3), and photochemistry in the outer circumstellar envelope(4). With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC + 10216 using the Herschel satellite(5). This includes some high-excitation lines with energies corresponding to similar to 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances(6) are much higher than hitherto predicted(7).
  •  
2.
  • Roelfsema, P. R., et al. (författare)
  • In-orbit performance of Herschel-HIFI
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described.Methods: The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources.Results: The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
3.
  • Decin, L., et al. (författare)
  • Water content and wind acceleration in the envelope around the oxygen-rich AGB star IK Tauri as seen by Herschel/HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L4-
  • Tidskriftsartikel (refereegranskat)abstract
    • During their asymptotic giant branch evolution, low-mass stars lose a significant fraction of their mass through an intense wind, enriching the interstellar medium with products of nucleosynthesis. We observed the nearby oxygen-rich asymptotic giant branch star IK Tau using the high-resolution HIFI spectrometer onboard Herschel. We report on the first detection of (H2O)-O-16 and the rarer isotopologues (H2O)-O-17 and (H2O)-O-18 in both the ortho and para states. We deduce a total water content (relative to molecular hydrogen) of 6.6 x 10(-5), and an ortho-to-para ratio of 3:1. These results are consistent with the formation of H2O in thermodynamical chemical equilibrium at photospheric temperatures, and does not require pulsationally induced non-equilibrium chemistry, vaporization of icy bodies or grain surface reactions. High-excitation lines of (CO)-C-12, (CO)-C-13, (SiO)-Si-28, (SiO)-Si-29, (SiO)-Si-30, HCN, and SO have also been detected. From the observed line widths, the acceleration region in the inner wind zone can be characterized, and we show that the wind acceleration is slower than hitherto anticipated.
  •  
4.
  • Jacquet, S., et al. (författare)
  • Colonization of the Mediterranean basin by the vector biting midge species Culicoides imicola : an old story
  • 2015
  • Ingår i: Molecular Ecology. - : Wiley-Blackwell. - 0962-1083 .- 1365-294X. ; 24:22, s. 5707-5725
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970s. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the Late Pleistocene or Early Holocene through a single event of introduction; however, we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus.
  •  
5.
  • Khouri, Theo, 1985, et al. (författare)
  • Study of the inner dust envelope and stellar photosphere of the AGB star R Doradus using SPHERE/ZIMPOL
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On the asymptotic giant branch (AGB) low-and intermediate-mass stars eject a large fraction of their envelope, but the mechanism driving these outflows is still poorly understood. For oxygen-rich AGB stars, the wind is thought to be driven by radiation pressure caused by scattering of radiation off dust grains. Aims. We study the photosphere, the warm molecular layer, and the inner wind of the close-by oxygen-rich AGB star R Doradus. We focus on investigating the spatial distribution of the dust grains that scatter light and whether these grains can be responsible for driving the outflow of this star. Methods. We use high-angular-resolution images obtained with SPHERE/ZIMPOL to study R Dor and its inner envelope in a novel way. We present observations in filters V, cntH alpha, and cnt820 and investigate the surface brightness distribution of the star and of the polarised light produced in the inner envelope. Thanks to second-epoch observations in cntH alpha, we are able to see variability on the stellar photosphere. We study the polarised-light data using a continuum-radiative-transfer code that accounts for direction-dependent scattering of photons off dust grains. Results. We find that in the first epoch the surface brightness of R Dor is asymmetric in V and cntH alpha, the filters where molecular opacity is stronger, while in cnt820 the surface brightness is closer to being axisymmetric. The second-epoch observations in cntH alpha show that the morphology of R Dor has changed completely in a timespan of 48 days to a more axisymmetric and compact configuration. This variable morphology is probably linked to changes in the opacity provided by TiO molecules in the extended atmosphere. The observations show polarised light coming from a region around the central star. The inner radius of the region from where polarised light is seen varies only by a small amount with azimuth. The value of the polarised intensity, however, varies by between a factor of 2.3 and 3.7 with azimuth for the different images. We fit the radial profile of the polarised intensity using a spherically symmetric model and a parametric description of the dust density profile, rho(r) = rho(degrees)r(-n). On average, we find exponents of -4.5 +/- 0.5 that correspond to a much steeper density profile than that of a wind expanding at constant velocity. The dust densities we derive imply an upper limit for the dust-to-gas ratio of similar to 2 x 10(-4) at 5.0 R-*. Considering all the uncertainties in observations and models, this value is consistent with the minimum values required by wind-driving models for the onset of a wind, of similar to 3.3 x 10(-4). However, if the steep density profile we find extends to larger distances from the star, the dust-to-gas ratio will quickly become too small for the wind of R Dor to be driven by the grains that produce the scattered light.
  •  
6.
  • Khouri, T., et al. (författare)
  • The wind of W Hydrae as seen by Herschel I. The CO envelope
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 561, s. Article no. A5-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essential for understanding AGB evolution, including the rate of mass loss and isotopic ratios. Aims. We characterize the CO emission from the wind of the low mass-loss rate oxygen-rich AGB star W Hya using data obtained by the HIFI, PACS, and SPIRE instruments on board the Herschel Space Observatory and ground-based telescopes. (CO)-C-12 and (CO)-C-13 lines are used to constrain the intrinsic C-12/C-13 ratio from resolved HIFI lines. Methods. We combined a state-of-the-art molecular line emission code and a dust continuum radiative transfer code to model the CO lines and the thermal dust continuum. Results. The acceleration of the outflow up to about 5.5 km s(-1) is quite slow and can be represented by a beta-type velocity law with index beta = 5. Beyond this point, acceleration up the terminal velocity of 7 km s(-1) is faster. Using the J = 10-9, 9-8, and 6-5 transitions, we find an intrinsic C-12/C-13 ratio of 18 +/- 10 for W Hya, where the error bar is mostly due to uncertainties in the (CO)-C-12 abundance and the stellar flux around 4.6 mu m. To match the low-excitation CO lines, these molecules need to be photo-dissociated at similar to 500 stellar radii. The radial dust emission intensity profile of our stellar wind model matches PACS images at 70 mu m out to 20 '' (or 800 stellar radii). For larger radii the observed emission is substantially stronger than our model predicts, indicating that at these locations there is extra material present. Conclusions. The initial slow acceleration of the wind may imply inefficient dust formation or dust driving in the lower part of the envelope. The final injection of momentum in the wind might be the result of an increase in the opacity thanks to the late condensation of dust species. The derived intrinsic isotopologue ratio for W Hya is consistent with values set by the first dredge-up and suggestive of an initial mass of 2 M-circle dot or more. However, the uncertainty in the isotopologic ratio is large, which makes it difficult to set reliable limits on W Hya's main-sequence mass.
  •  
7.
  • Lombaert, Robin, 1986, et al. (författare)
  • Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 588
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The recent detection of warm H2O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H2O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H2O molecules in the intermediate wind. Aims. We aim to determine the properties of H2O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H2O formation pathway. Methods. Using far-infrared spectra taken with the PACS instrument onboard the Herschel telescope, we combined two methods to identify H2O emission trends and interpreted these in terms of theoretically expected patterns in the H2O abundance. Through the use of line-strength ratios, we analyzed the correlation between the strength of H2O emission and the mass-loss rate of the objects, as well as the radial dependence of the H2O abundance in the circumstellar outflow per individual source. We computed a model grid to account for radiative-transfer effects in the line strengths. Results. We detect warm H2O emission close to or inside the wind acceleration zone of all sample stars, irrespective of their stellar or circumstellar properties. The predicted H2O abundances in carbon-rich environments are in the range of 10(-6) up to 10(-4) for Miras and semiregular-a objects, and cluster around 10 6 for semiregular-b objects. These predictions are up to three orders of magnitude greater than what is predicted by state-of-the-art chemical models. We find a negative correlation between the H2O/CO line-strength ratio and gas mass-loss rate for. M-g > 5 x 10(7) M-circle dot yr(-1), regardless of the upper-level energy of the relevant transitions. This implies that the H2O formation mechanism becomes less efficient with increasing wind density. The negative correlation breaks down for the sources of lowest mass-loss rate, the semiregular-b objects. Conclusions. Observational constraints suggest that pulsationally induced shocks play an important role in warm H2O formation in carbon-rich AGB stars, although photodissociation by interstellar UV photons may still contribute. Both mechanisms fail in predicting the high H2O abundances we infer in Miras and semiregular-a sources, while our results for the semiregular-b objects are inconclusive.
  •  
8.
  • Royer, P., et al. (författare)
  • PACS and SPIRE spectroscopy of the red supergiant VY CMa
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L145-
  • Tidskriftsartikel (refereegranskat)abstract
    • With a luminosity > 10(5) L-circle dot and a mass-loss rate of similar to 2 x 10(-4) M-circle dot yr(-1), the red supergiant VY CMa truly is a spectacular object. Because of its extreme evolutionary state, it could explode as supernova any time. Studying its circumstellar material, into which the supernova blast will run, provides interesting constraints on supernova explosions and on the rich chemistry taking place in such complex circumstellar envelopes. We have obtained spectroscopy of VY CMa over the full wavelength range offered by the PACS and SPIRE instruments of Herschel, i.e. 55-672 micron. The observations show the spectral fingerprints of more than 900 spectral lines, of which more than half belong to water. In total, we have identified 13 different molecules and some of their isotopologues. A first analysis shows that water is abundantly present, with an ortho-to-para ratio as low as similar to 1.3:1, and that chemical non-equilibrium processes determine the abundance fractions in the inner envelope.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy