SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lombard Fabien) "

Sökning: WFRF:(Lombard Fabien)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jaspers, Cornelia, et al. (författare)
  • Seasonal dynamics of early life stages of invasive and native ctenophores give clues to invasion and bloom potential in the Baltic Sea
  • 2013
  • Ingår i: Journal of Plankton Research. - : Oxford University Press (OUP). - 0142-7873 .- 1464-3774. ; 35:3, s. 582-594
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, both the invasive ctenophore Mnemiopsis leidyi and the arctic Mertensia ovum were discovered in the Baltic Sea but their range expansion remains unclear due to misidentification of their larval stages. Supported by molecular species verification we describe seasonal abundance and distribution of larvae and eggs of these two species. We show that their occurrence is significantly but inversely related to salinity. Mertensia ovum was present year round throughout the brackish Baltic Sea but also occurred in high-saline areas during cold seasons. Larvae of M. leidyi occurred throughout all seasons in high-saline areas but never extended further into the central Baltic. Highest ctenophore egg abundances were observed in high-saline areas during summer along with the first appearance of M. leidyi adults. The M. leidyi population peaked 2 months after the first occurrence of adults in high-saline areas, suggesting these areas as a source for lower saline regions. Low larvae abundances and a reduced transitional-to-adult ratio in the southern Baltic point to reduced or no active recruitment, suggesting that drift of animals from high-saline into lower saline regions sustains the M. leidyi population in the southern Baltic such as the Arkona and Bornholm basins.
  •  
2.
  • Karlusich, Juan José Pierella, et al. (författare)
  • Coupling Imaging and Omics in Plankton Surveys : State-of-the-Art, Challenges, and Future Directions
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in characterizing plankton communities is the collection, identification and quantification of samples in a time-efficient way. The classical manual microscopy counts are gradually being replaced by high throughput imaging and nucleic acid sequencing. DNA sequencing allows deep taxonomic resolution (including cryptic species) as well as high detection power (detecting rare species), while RNA provides insights on function and potential activity. However, these methods are affected by database limitations, PCR bias, and copy number variability across taxa. Recent developments in high-throughput imaging applied in situ or on collected samples (high-throughput microscopy, Underwater Vision Profiler, FlowCam, ZooScan, etc) has enabled a rapid enumeration of morphologically-distinguished plankton populations, estimates of biovolume/biomass, and provides additional valuable phenotypic information. Although machine learning classifiers generate encouraging results to classify marine plankton images in a time efficient way, there is still a need for large training datasets of manually annotated images. Here we provide workflow examples that couple nucleic acid sequencing with high-throughput imaging for a more complete and robust analysis of microbial communities. We also describe the publicly available and collaborative web application EcoTaxa, which offers tools for the rapid validation of plankton by specialists with the help of automatic recognition algorithms. Finally, we describe how the field is moving with citizen science programs, unmanned autonomous platforms with in situ sensors, and sequencing and digitalization of historical plankton samples.
  •  
3.
  • Monferrer, Natalia Llopis, et al. (författare)
  • Siliceous Rhizaria abundances and diversity in the Mediterranean Sea assessed by combined imaging and metabarcoding approaches
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Siliceous Rhizaria (polycystine radiolarians and phaeodarians) are significant contributors to carbon and silicon biogeochemical cycles. Considering their broad taxonomic diversity and their wide size range (from a few micrometres up to several millimetres), a comprehensive evaluation of the entire community to carbon and silicon cycles is challenging. Here, we assess the diversity and contribution of silicified Rhizaria to the global biogenic silica stocks in the upper 500 m of the oligotrophic North-Western Mediterranean Sea using both imaging (FlowCAM, Zooscan and Underwater Vision Profiler) and molecular tools and data. While imaging data (cells m(-3)) revealed that the most abundant organisms were the smallest, molecular results (number of reads) showed that the largest Rhizaria had the highest relative abundances. While this seems contradictory, relative abundance data obtained with molecular methods appear to be closer to the total biovolume data than to the total abundance data of the organisms. This result reflects a potential link between gene copies number and the volume of a given cell allowing reconciling molecular and imaging data. Using abundance data from imaging methods we estimate that siliceous Rhizaria accounted for up to 6% of the total biogenic silica biomass of the siliceous planktonic community in the upper 500m of the water column.
  •  
4.
  • Pierella Karlusich, Juan José, et al. (författare)
  • Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen fixation has a critical role in marine primary production, yet our understanding of marine nitrogen-fixers (diazotrophs) is hindered by limited observations. Here, we report a quantitative image analysis pipeline combined with mapping of molecular markers for mining >2,000,000 images and >1300 metagenomes from surface, deep chlorophyll maximum and mesopelagic seawater samples across 6 size fractions (<0.2-2000m). We use this approach to characterise the diversity, abundance, biovolume and distribution of symbiotic, colony-forming and particle-associated diazotrophs at a global scale. We show that imaging and PCR-free molecular data are congruent. Sequence reads indicate diazotrophs are detected from the ultrasmall bacterioplankton (<0.2m) to mesoplankton (180-2000 mu m) communities, while images predict numerous symbiotic and colony-forming diazotrophs (>20 mu m). Using imaging and molecular data, we estimate that polyploidy can substantially affect gene abundances of symbiotic versus colony-forming diazotrophs. Our results support the canonical view that larger diazotrophs (>10 mu m) dominate the tropical belts, while unicellular cyanobacterial and non-cyanobacterial diazotrophs are globally distributed in surface and mesopelagic layers. We describe co-occurring diazotrophic lineages of different lifestyles and identify high-density regions of diazotrophs in the global ocean. Overall, we provide an update of marine diazotroph biogeographical diversity and present a new bioimaging-bioinformatic workflow. Nitrogen fixation by diazotrophs is critical for marine primary production. Using Tara Oceans datasets, this study combines a quantitative image analysis pipeline with metagenomic mining to provide an improved global overview of diazotroph abundance, diversity and distribution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy