SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Longshaw M.) "

Sökning: WFRF:(Longshaw M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Appeltans, W., et al. (författare)
  • The Magnitude of Global Marine Species Diversity
  • 2012
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 22:23, s. 2189-2202
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are similar to 226,000 eukaryotic marine species described. More species were described in the past decade (similar to 20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are similar to 170,000 synonyms, that 58,000-72,000 species are collected but not yet described, and that 482,000-741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7-1.0 million marine species. Past rates of description of new species indicate there may be 0.5 +/- 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century.
  •  
3.
  • Davies, Kerrie A., et al. (författare)
  • Underdiagnosis of Clostridium difficile across Europe : the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID)
  • 2014
  • Ingår i: The Lancet - Infectious diseases. - : Elsevier. - 1473-3099 .- 1474-4457. ; 14:12, s. 1208-1219
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Variations in testing for Clostridium difficile infection can hinder patients' care, increase the risk of transmission, and skew epidemiological data. We aimed to measure the underdiagnosis of C difficile infection across Europe.Methods: We did a questionnaire-based study at 482 participating hospitals across 20 European countries. Hospitals were questioned about their methods and testing policy for C difficile infection during the periods September, 2011, to August, 2012, and September, 2012, to August, 2013. On one day in winter, 2012-13 (December, 2012, or January, 2013), and summer, 2013 (July or August), every hospital sent all diarrhoeal samples submitted to their microbiology laboratory to a national coordinating laboratory for standardised testing of C difficile infection. Our primary outcome measures were the rates of testing for and cases of C difficile infection per 10 000 patient bed-days. Results of local and national C difficile infection testing were compared with each other. If the result was positive at the national laboratory but negative at the local hospital, the result was classified as undiagnosed C difficile infection. We compared differences in proportions with the Mann-Whitney test, or McNemar's test if data were matched.Findings: During the study period, participating hospitals reported a mean of 65.8 tests (country range 4. 6-223.3) for C difficile infection per 10 000 patient-bed days and a mean of 7.0 cases (country range 0.7-28.7) of C difficile infection per 10 000 patient-bed days. Only two-fifths of hospitals reported using optimum methods for testing of C difficile infection (defined by European guidelines), although the number of participating hospitals using optimum methods increased during the study period, from 152 (32%) of 468 in 2011-12 to 205 (48%) of 428 in 2012-13. Across all 482 European hospitals on the two sampling days, 148 (23%) of 641 samples positive for C difficile infection (as determined by the national laboratory) were not diagnosed by participating hospitals because of an absence of clinical suspicion, equating to about 74 missed diagnoses per day.Interpretation: A wide variety of testing strategies for C difficile infection are used across Europe. Absence of clinical suspicion and suboptimum laboratory diagnostic methods mean that an estimated 40 000 inpatients with C difficile infection are potentially undiagnosed every year in 482 European hospitals.
  •  
4.
  • Small, H J, et al. (författare)
  • Laser-assisted microdissection: a new tool for aquatic molecular parasitology.
  • 2008
  • Ingår i: Diseases of aquatic organisms. - 0177-5103. ; 82:2, s. 151-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser-assisted microdissection (LMD) has been developed to isolate distinct cell populations from heterogeneous tissue sections, cytological preparations, or live cell samples. Downstream applications typically include gene expression studies using real-time PCR and array platforms, diagnostic PCR, and protein expression studies. LMD techniques are now commonplace in mainstream biological research and clearly have suitable applications in the field of aquatic pathology and parasitology. The present study used LMD to isolate 2 dinoflagellate parasites (Hematodinium spp.) from formalin-fixed paraffin-embedded tissue sections from 2 crustacean hosts, Cancer pagurus and Portunus trituberculatus. DNA was isolated from LMD parasite preparations, and partial regions (up to 300 bp) of the small subunit and the first internal transcribed spacer region of the rRNA gene complex from the Hematodinium spp. were PCR amplified using diagnostic primers. The amplification products were sequenced to confirm the identity of the targeted regions. The techniques, applications, and limitations of LMD to address questions in aquatic molecular pathology and parasitology are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy