SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Loreau Michel) "

Sökning: WFRF:(Loreau Michel)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brännström, Åke, 1975-, et al. (författare)
  • Emergence and maintenance of biodiversity in an evolutionary food-web model
  • 2011
  • Ingår i: Theoretical Ecology. - : Springer Science+Business Media B.V.. - 1874-1738 .- 1874-1746. ; 4:4, s. 467-478
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological communities emerge as a consequence of gradual evolution, speciation, and immigration. In this study, we explore how these processes and the structure of the evolved food webs are affected by species-level properties. Using a model of biodiversity formation that is based on body size as the evolving trait and incorporates gradual evolution and adaptive radiation, we investigate how conditions for initial diversification relate to the eventual diversity of a food web. We also study how trophic interactions, interference competition, and energy availability affect a food web’s maximum trophic level and contrast this with conditions for high diversity. We find that there is not always a positive relationship between conditions that promote initial diversification and eventual diversity, and that the most diverse food webs often do not have the highest trophic levels.
  •  
2.
  • Cherif, Mehdi, 1978-, et al. (författare)
  • Plant - herbivore -decomposer stoichiometric mismatches and nutrientcycling in ecosystems
  • 2013
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 280:1754, s. 20122453-
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant stoichiometry is thought to have a major influence on how herbivores affect nutrient availability in ecosystems. Most conceptual models predict that plants with high nutrient contents increase nutrient excretion by herbivores, in turn raising nutrient availability. To test this hypothesis, we built a stoichiometrically explicit model that includes a simple but thorough description of the processes of herbivory and decomposition. Our results challenge traditional views of herbivore impacts on nutrient availability in many ways. They show that the relationship between plant nutrient content and the impact of herbivores predicted by conceptual models holds only at high plant nutrient contents. At low plant nutrient contents, the impact of herbivores is mediated by the mineralization/immobilization of nutrients by decomposers and by the type of resource limiting the growth of decomposers. Both parameters are functions of the mismatch between plant and decomposer stoichiometries. Our work provides new predictions about the impacts of herbivores on ecosystemfertility that depend on critical interactions between plant, herbivore and decomposer stoichiometries in ecosystems.
  •  
3.
  • Cherif, Mehdi, et al. (författare)
  • Stoichiometric constraints on resource use, competitive interactions, and elemental cycling in microbial decomposers
  • 2007
  • Ingår i: American Naturalist. - McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. Ecole Normale Super, Biogeochim & Ecol Milieux Continentaux Lab, UMR 7618, F-75230 Paris 05, France. : UNIV CHICAGO PRESS. - 0003-0147 .- 1537-5323. ; 169:6, s. 709-724
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterotrophic microbial decomposers, such as bacteria and fungi, immobilize or mineralize inorganic elements, depending on their elemental composition and that of their organic resource. This fact has major implications for their interactions with other consumers of inorganic elements. We combine the stoichiometric and resource-ratio approaches in a model describing the use by decomposers of an organic and an inorganic resource containing the same essential element, to study its consequences on decomposer interactions and their role in elemental cycling. Our model considers the elemental composition of organic matter and the principle of its homeostasis explicitly. New predictions emerge, in particular, ( 1) stoichiometric constraints generate a trade-off between the R* values of decomposers for the two resources; ( 2) they create favorable conditions for the coexistence of decomposers limited by different resources and with different elemental demands; ( 3) however, combined with conditions on species-specific equilibrium limitation, they draw decomposers toward colimitation by the organic and inorganic resources on an evolutionary time scale. Moreover, we derive the conditions under which decomposers switch from consumption to excretion of the inorganic resource. We expect our predictions to be useful in explaining the community structure of decomposers and their interactions with other consumers of inorganic resources, particularly primary producers.
  •  
4.
  • Cherif, Mehdi, et al. (författare)
  • Towards a more biologically realistic use of Droop's equations to model growth under multiple nutrient limitation
  • 2010
  • Ingår i: Oikos. - : Wiley-Blackwell. - 0030-1299 .- 1600-0706. ; 119:6, s. 897-907
  • Tidskriftsartikel (refereegranskat)abstract
    • Droop's model was originally designed to describe the growth of unicellular phytoplankton species in chemostats but it is now commonly used for a variety of organisms in models of trophic interactions, ecosystem functioning, and evolution. Despite its ubiquitous use, Droop's model is still limited by several simplifying assumptions. For example, the assumption of equal theoretical maximum growth rates for all nutrients is commonly used to describe growth limited by multiple nutrients. This assumption, however, is both biologically unrealistic and potentially misleading. We propose the alternative hypothesis of equal realized maximum growth rates for all nutrients. We support our hypothesis with empirical and theoretical arguments and discuss how it may improve our understanding of the biology of growth, while avoiding some of the pitfalls of the previous assumption.
  •  
5.
  • Cherif, Mehdi, et al. (författare)
  • When microbes and consumers determine the limiting nutrient of autotrophs : a theoretical analysis
  • 2009
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : ROYAL SOC. - 0962-8452 .- 1471-2954. ; 276:1656, s. 487-497
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological stoichiometry postulates that differential nutrient recycling of elements such as nitrogen and phosphorus by consumers can shift the element that limits plant growth. However, this hypothesis has so far considered the effect of consumers, mostly herbivores, out of their food-web context. Microbial decomposers are important components of food webs, and might prove as important as consumers in changing the availability of elements for plants. In this theoretical study, we investigate how decomposers determine the nutrient that limits plants, both by feeding on nutrients and organic carbon released by plants and consumers, and by being fed upon by omnivorous consumers. We show that decomposers can greatly alter the relative availability of nutrients for plants. The type of limiting nutrient promoted by decomposers depends on their own elemental composition and, when applicable, on their ingestion by consumers. Our results highlight the limitations of previous stoichiometric theories of plant nutrient limitation control, which often ignored trophic levels other than plants and herbivores. They also suggest that detrital chains play an important role in determining plant nutrient limitation in many ecosystems.
  •  
6.
  • Clark, Adam Thomas, et al. (författare)
  • General statistical scaling laws for stability in ecological systems
  • 2021
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 24:7, s. 1474-1486
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological stability refers to a family of concepts used to describe how systems of interacting species vary through time and respond to disturbances. Because observed ecological stability depends on sampling scales and environmental context, it is notoriously difficult to compare measurements across sites and systems. Here, we apply stochastic dynamical systems theory to derive general statistical scaling relationships across time, space, and ecological level of organisation for three fundamental stability aspects: resilience, resistance, and invariance. These relationships can be calibrated using random or representative samples measured at individual scales, and projected to predict average stability at other scales across a wide range of contexts. Moreover deviations between observed vs. extrapolated scaling relationships can reveal information about unobserved heterogeneity across time, space, or species. We anticipate that these methods will be useful for cross-study synthesis of stability data, extrapolating measurements to unobserved scales, and identifying underlying causes and consequences of heterogeneity.
  •  
7.
  • Franklin, Oskar, et al. (författare)
  • Organizing principles for vegetation dynamics
  • 2020
  • Ingår i: Nature plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 6:5, s. 444-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants and vegetation play a critical-but largely unpredictable-role in global environmental changes due to the multitude of contributing processes at widely different spatial and temporal scales. In this Perspective, we explore approaches to master this complexity and improve our ability to predict vegetation dynamics by explicitly taking account of principles that constrain plant and ecosystem behaviour: natural selection, self-organization and entropy maximization. These ideas are increasingly being used in vegetation models, but we argue that their full potential has yet to be realized. We demonstrate the power of natural selection-based optimality principles to predict photosynthetic and carbon allocation responses to multiple environmental drivers, as well as how individual plasticity leads to the predictable self-organization of forest canopies. We show how models of natural selection acting on a few key traits can generate realistic plant communities and how entropy maximization can identify the most probable outcomes of community dynamics in space- and time-varying environments. Finally, we present a roadmap indicating how these principles could be combined in a new generation of models with stronger theoretical foundations and an improved capacity to predict complex vegetation responses to environmental change. Integrating natural selection and other organizing principles into next-generation vegetation models could render them more theoretically sound and useful for earth system applications and modelling climate impacts.
  •  
8.
  • Hauzy, Céline, et al. (författare)
  • Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities
  • 2010
  • Ingår i: Journal of Theoretical Biology. - : Elsevier BV. - 0022-5193 .- 1095-8541. ; 266:3, s. 458-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Although density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronizses local dynamics, whereas intraspecific density-dependent dispersal may either synchronize or desynchronize it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation.
  •  
9.
  • Phillips, Helen R. P., et al. (författare)
  • Global distribution of earthworm diversity
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 366:6464, s. 480-
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
  •  
10.
  • Portalier, Sebastien M. J., et al. (författare)
  • Size-related effects of physical factors on phytoplankton communities
  • 2016
  • Ingår i: Ecological Modelling. - : Elsevier. - 0304-3800 .- 1872-7026. ; 323, s. 41-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytoplankton communities are influenced by light availability. Therefore, one factor promoting phytoplankton species persistence is their ability to stay within the euphotic zone. This ability is determined by the interplay between species mass, buoyancy and dispersion, which are driven by physical factors. In this study, we investigate how these physical factors and light-use efficiency, all correlated with cell size, influence species persistence. Our model shows, first, that species can persist only within a size-dependent range of turbulence strength. The minimal level of turbulence required for persistence increases drastically with cell size, while all species reach similar maximal levels of turbulence. Second, the maximal water column depth allowing persistence is also size-dependent: large cells show a maximal depth at both low and high turbulence strength, while small cells show this pattern only at high turbulence strength. This study emphasizes the importance of the physical medium in ecosystems and its interplay with cell size for phytoplankton dynamics and bloom condition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy