SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Loryan Irena 1977 ) "

Sökning: WFRF:(Loryan Irena 1977 )

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Sofia, et al. (författare)
  • Heterogeneous drug tissue binding in brain regions of rats, Alzheimer’s patients and controls : impact on translational drug development
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • For preclinical and clinical assessment of therapeutically relevant unbound, free, brain concentrations, the pharmacokinetic parameter fraction of unbound drug in brain (fu,brain) is commonly used to compensate total drug concentrations for nonspecific brain tissue binding (BTB). As, homogenous BTB is assumed between species and in health and disease, rat BTB is routinely used. The impact of Alzheimer’s disease (AD) on drug BTB in brain regions of interest (ROI), i.e., fu,brain,ROI, is yet unclear. This study for the first time provides insight into regional drug BTB and the validity of employing rat fu,brain,ROI as a surrogate of human BTB, by investigating five marketed drugs in post-mortem tissue from AD patients (n = 6) and age-matched controls (n = 6). Heterogeneous drug BTB was observed in all within group comparisons independent of disease and species. The findings oppose the assumption of uniform BTB, highlighting the need of case-by-case evaluation of fu,brain,ROI in translational CNS research.
  •  
2.
  • Andronis, Christos, et al. (författare)
  • Molecular basis of mood and cognitive adverse events elucidated via a combination of pharmacovigilance data mining and functional enrichment analysis
  • 2020
  • Ingår i: Archives of Toxicology. - : Springer Nature. - 0340-5761 .- 1432-0738. ; 94:8, s. 2829-2845
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug-induced Mood- and Cognition-related adverse events (MCAEs) are often only detected during the clinical trial phases of drug development, or even after marketing, thus posing a major safety concern and a challenge for both pharmaceutical companies and clinicians. To fill some gaps in the understanding and elucidate potential biological mechanisms of action frequently associated with MCAEs, we present a unique workflow linking observational population data with the available knowledge at molecular, cellular, and psychopharmacology levels. It is based on statistical analysis of pharmacovigilance reports and subsequent signaling pathway analyses, followed by evidence-based expert manual curation of the outcomes. Our analysis: (a) ranked pharmaceuticals with high occurrence of such adverse events (AEs), based on disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database, and (b) identified 120 associated genes and common pathway nodes possibly underlying MCAEs. Nearly two-thirds of the identified genes were related to immune modulation, which supports the critical involvement of immune cells and their responses in the regulation of the central nervous system function. This finding also means that pharmaceuticals with a negligible central nervous system exposure may induce MCAEs through dysregulation of the peripheral immune system. Knowledge gained through this workflow unravels putative hallmark biological targets and mediators of drug-induced mood and cognitive disorders that need to be further assessed and validated in experimental models. Thereafter, they can be used to substantially improve in silico/in vitro/in vivo tools for predicting these adversities at a preclinical stage.
  •  
3.
  • Balayssac, David, et al. (författare)
  • Neurofilament light chain in plasma as a sensitive diagnostic biomarker of peripheral neurotoxicity : In Vivo mouse studies with oxaliplatin and paclitaxel - NeuroDeRisk project
  • 2023
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 167
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying compounds that are neurotoxic either toward the central or the peripheral nervous systems (CNS or PNS) would greatly benefit early stages of drug development by derisking liabilities and selecting safe compounds. Unfortunately, so far assays mostly rely on histopathology findings often identified after repeated-dose toxicity studies in animals. The European NeuroDeRisk project aimed to provide comprehensive tools to identify compounds likely inducing neurotoxicity. As part of this project, the present work aimed to identify diagnostic non-invasive biomarkers of PNS toxicity in mice. We used two neurotoxic drugs in vivo to correlate functional, histopathological and biological findings. CD1 male mice received repeated injections of oxaliplatin or paclitaxel followed by an assessment of drug exposure in CNS/PNS tissues. Functional signs of PNS toxicity were assessed using electronic von Frey and cold paw immersion tests (oxaliplatin), and functional observational battery, rotarod and cold plate tests (paclitaxel). Plasma concentrations of neurofilament light chain (NF-L) and vascular endothelial growth factor A (VEGF-A) were measured, and histopathological evaluations were performed on a comprehensive list of CNS and PNS tissues. Functional PNS toxicity was observed only in oxaliplatin-treated mice. Histopathological findings were observed dose-dependently only in paclitaxel groups. While no changes of VEGF-A concentrations was recorded, NF-L concentrations were increased only in paclitaxel-treated animals as early as 7 days after the onset of drug administration. These results show that plasma NF-L changes correlated with microscopic changes in the PNS, thus strongly suggesting that NF-L could be a sensitive and specific biomarker of PNS toxicity in mice.
  •  
4.
  • Bällgren, Frida, et al. (författare)
  • Active Uptake of Oxycodone at Both the Blood-Cerebrospinal Fluid Barrier and The Blood-Brain Barrier without Sex Differences : A Rat Microdialysis Study
  • 2023
  • Ingår i: Pharmaceutical research. - : Springer Nature. - 0724-8741 .- 1573-904X. ; 40, s. 2715-2730
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Oxycodone active uptake across the blood-brain barrier (BBB) is associated with the putative proton-coupled organic cation (H+/OC) antiporter system. Yet, the activity of this system at the blood-cerebrospinal fluid barrier (BCSFB) is not fully understood. Additionally, sex differences in systemic pharmacokinetics and pharmacodynamics of oxycodone has been reported, but whether the previous observations involve sex differences in the function of the H+/OC antiporter system remain unknown. The objective of this study was, therefore, to investigate the extent of oxycodone transport across the BBB and the BCSFB in female and male Sprague-Dawley rats using microdialysis.Methods: Microdialysis probes were implanted in the blood and two of the following brain locations: striatum and lateral ventricle or cisterna magna. Oxycodone was administered as an intravenous infusion, and dialysate, blood and brain were collected. Unbound partition coefficients (Kp,uu) were calculated to understand the extent of oxycodone transport across the blood-brain barriers. Non-compartmental analysis was conducted using Phoenix 64 WinNonlin. GraphPad Prism version 9.0.0 was used to perform t-tests, one-way and two-way analysis of variance followed by Tukey's or Sidak's multiple comparison tests. Differences were considered significant at p < 0.05.Results: The extent of transport at the BBB measured in striatum was 4.44 ± 1.02 (Kp,uu,STR), in the lateral ventricle 3.41 ± 0.74 (K-p,K-uu,K-LV) and in cisterna magna 2.68 ± 1.01 (Kp,Kuu,KCM). These Kp,uu values indicate that the extent of oxycodone transport is significantly lower at the BCSFB compared with that at the BBB, but still confirm the presence of active uptake at both blood-brain interfaces. No significant sex differences were observed in neither the extent of oxycodone delivery to the brain, nor in the systemic pharmacokinetics of oxycodone.Conclusions: The findings clearly show that active uptake is present at both the BCSFB and the BBB. Despite some underestimation of the extent of oxycodone delivery to the brain, CSF may be an acceptable surrogate of brain ISF for oxycodone, and potentially also other drugs actively transported into the brain via the H+/OC antiporter system.
  •  
5.
  • Chen, Xiaomei, et al. (författare)
  • Effect of transporter inhibition on the distribution of cefadroxil in rat brain
  • 2014
  • Ingår i: Fluids and Barriers of the CNS. - : Springer Science and Business Media LLC. - 2045-8118. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundCefadroxil, a cephalosporin antibiotic, is a substrate for several membrane transporters including peptide transporter 2 (PEPT2), organic anion transporters (OATs), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptides (OATPs). These transporters are expressed at the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and/or brain cells. The effect of these transporters on cefadroxil distribution in brain is unknown, especially in the extracellular and intracellular fluids within brain.MethodsIntracerebral microdialysis was used to measure unbound concentrations of cefadroxil in rat blood, striatum extracellular fluid (ECF) and lateral ventricle cerebrospinal fluid (CSF). The distribution of cefadroxil in brain was compared in the absence and presence of probenecid, an inhibitor of OATs, MRPs and OATPs, where both drugs were administered intravenously. The effect of PEPT2 inhibition by intracerebroventricular (icv) infusion of Ala-Ala, a substrate of PEPT2, on cefadroxil levels in brain was also evaluated. In addition, using an in vitro brain slice method, the distribution of cefadroxil in brain intracellular fluid (ICF) was studied in the absence and presence of transport inhibitors (probenecid for OATs, MRPs and OATPs; Ala-Ala and glycylsarcosine for PEPT2).ResultsThe ratio of unbound cefadroxil AUC in brain ECF to blood (Kp,uu,ECF) was ~2.5-fold greater during probenecid treatment. In contrast, the ratio of cefadroxil AUC in CSF to blood (Kp,uu,CSF) did not change significantly during probenecid infusion. Icv infusion of Ala-Ala did not change cefadroxil levels in brain ECF, CSF or blood. In the brain slice study, Ala-Ala and glycylsarcosine decreased the unbound volume of distribution of cefadroxil in brain (Vu,brain), indicating a reduction in cefadroxil accumulation in brain cells. In contrast, probenecid increased cefadroxil accumulation in brain cells, as indicated by a greater value for Vu,brain.ConclusionsTransporters (OATs, MRPs, and perhaps OATPs) that can be inhibited by probenecid play an important role in mediating the brain-to-blood efflux of cefadroxil at the BBB. The uptake of cefadroxil in brain cells involves both the influx transporter PEPT2 and efflux transporters (probenecid-inhibitable). These findings demonstrate that drug-drug interactions via relevant transporters may affect the distribution of cephalosporins in both brain ECF and ICF.
  •  
6.
  • Choong, Eva, et al. (författare)
  • Sex difference in formation of propofol metabolites : a replication study
  • 2013
  • Ingår i: Basic & Clinical Pharmacology & Toxicology. - : Wiley. - 1742-7835 .- 1742-7843. ; 113:2, s. 126-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Women recover faster from propofol anaesthesia and have been described to have a higher incidence of awareness during surgery, compared to men - an effect that may be inherent in sex differences in propofol metabolism. In an observational study, 98 ASA I-II patients treated with continuous propofol infusion were recruited. The associations between sex and CYP2B6 and UGT1A9 polymorphisms with dose- and weight-adjusted area under the total plasma level time curves (AUC) for propofol, and its metabolites propofol glucuronide (PG), 4-hydroxypropofol (OHP) and hydroxyl glucuronide metabolites 4-hydroxypropofol-1-O-β-D-glucuronide (Q1G) and 4-hydroxypropofol-4-O-β-D-glucuronide (Q4G), were analysed. Significantly higher AUC of PG (1.3 times, p = 0.03), Q1G (2.9 times, p < 0.001), Q4G (2.4 times, p < 0.01) and OHP (4.6 times, p = 0.01) were found in women (n = 53) than in men (n = 45) after intravenous infusion of propofol using target-controlled infusion system. There was, however, no significant impact of gene polymorphisms on propofol biotransformation. The results, which are supported by a previous pilot study using a propofol bolus dose, suggest that, compared to men, more rapid propofol metabolism may occur in women - a factor that may contribute to the mentioned differences in the efficacy of propofol anaesthesia between male and female patients.
  •  
7.
  • Haslemo, T, et al. (författare)
  • UGT1A4*3 encodes significantly increased glucuronidation of olanzapine in patients on maintenance treatment and in recombinant systems
  • 2012
  • Ingår i: Clinical Pharmacology and Therapeutics. - : Springer Science and Business Media LLC. - 0009-9236 .- 1532-6535. ; 92:2, s. 221-227
  • Tidskriftsartikel (refereegranskat)abstract
    • Olanzapine, a world leader in antipsychotic drugs, is used in the treatment of schizophrenia and bipolar disorder. There is considerable interpatient variability in its hepatic clearance. Polymorphic glucuronidation of olanzapine by uridine diphosphate glucuronosyltransferase 1A4 (UGT1A4) was investigated retrospectively in patient samples taken for routine therapeutic drug monitoring (TDM) and in recombinant metabolic systems in vitro. Multivariate analyses revealed that patients who were heterozygous as well as those who were homozygous for the UGT1A4*3 allelic variant had significantly higher concentrations of the major metabolite olanzapine 10-N-glucuronide in serum (+38% (P = 0.011) and +246% (P < 0.001), respectively). This finding was in line with the significant increases in glucuronidation activity of olanzapine observed with recombinant UGT1A4.3 (Val-48) as compared with UGT1A4.1 (Leu-48) (1.3-fold difference, P < 0.001). By contrast, serum concentrations of the parent drug were not significantly influenced by UGT1A4 genotype. Our findings therefore indicate that UGT1A4-mediated metabolism is not a major contributor to interpatient variability in olanzapine levels. However, with respect to other drugs for which UGT1A4 has a dominant role in clearance, increased glucuronidation encoded by UGT1A4*3 might impact the risk for subtherapeutic drug exposure.
  •  
8.
  • Holder, Brianna M., et al. (författare)
  • Brain barriers virtual : an interim solution or future opportunity?
  • 2022
  • Ingår i: Fluids and Barriers of the CNS. - : Springer Nature. - 2045-8118. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundScientific conferences are vital communication events for scientists in academia, industry, and government agencies. In the brain barriers research field, several international conferences exist that allow researchers to present data, share knowledge, and discuss novel ideas and concepts. These meetings are critical platforms for researchers to connect and exchange breakthrough findings on a regular basis. Due to the worldwide COVID-19 pandemic, all in-person meetings were canceled in 2020. In response, we launched the Brain Barriers Virtual 2020 (BBV2020) seminar series, the first stand-in virtual event for the brain barriers field, to offer scientists a virtual platform to present their work. Here we report the aggregate attendance information on two in-person meetings compared with BBV2020 and comment on the utility of the virtual platform.MethodsThe BBV2020 seminar series was hosted on a Zoom webinar platform and was free of cost for participants. Using registration- and Zoom-based data from the BBV2020 virtual seminar series and survey data collected from BBV2020 participants, we analyzed attendance trends, global reach, participation based on career stage, and engagement of BBV2020. We compared these data with those from two previous in-person conferences, a BBB meeting held in 2018 and CVB 2019.ResultsWe found that BBV2020 seminar participation steadily decreased over the course of the series. In contrast, live participation was consistently above 100 attendees and recording views were above 200 views per seminar. We also found that participants valued BBV2020 as a supplement during the COVID-19 pandemic in 2020. Based on one post-BBV2020 survey, the majority of participants indicated that they would prefer in-person meetings but would welcome a virtual component to future in-person meetings. Compared to in-person meetings, BBV2020 enabled participation from a broad range of career stages and was attended by scientists in academic, industry, and government agencies from a wide range of countries worldwide.ConclusionsOur findings suggest that a virtual event such as the BBV2020 seminar series provides easy access to science for researchers across all career stages around the globe. However, we recognize that limitations exist. Regardless, such a virtual event could be a valuable tool for the brain barriers community to reach and engage scientists worldwide to further grow the brain barriers research field in the future.
  •  
9.
  • Hu, Yang, 1989-, et al. (författare)
  • Analysis of the contributing role of drug transport across biological barriers in the development and treatment of chemotherapy-induced peripheral neuropathy
  • 2024
  • Ingår i: Fluids and Barriers of the CNS. - : Springer Nature. - 2045-8118. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Chemotherapy-induced peripheral neuropathy (CIPN) represents a major unmet medical need that currently has no preventive and/or curative treatment. This is, among others, driven by a poor understanding of the contributive role of drug transport across biological barriers to target-site exposure. Methods Here, we systematically investigated the transport of 11 small-molecule drugs, both, associated and not with CIPN development, at conventional (dorsal root ganglia, sciatic nerve) and non-conventional (brain, spinal cord, skeletal muscle) CIPN sites. We developed a Combinatory Mapping Approach for CIPN, CMA-CIPN, combining in vivo and in vitro elements. Results Using CMA-CIPN, we determined the unbound tissue-to-plasma concentration ratio (K-p,K-uu) and the unbound intracellular-to-extracellular concentration ratio (K-p,K-uu,K-cell), to quantitatively assess the extent of unbound drug transport across endothelial interfaces and parenchymal cellular barriers of investigated CIPN-sites, respectively, in a rat model. The analysis revealed that unique pharmacokinetic characteristics underly time-dependent accumulation of the CIPN-positive drugs paclitaxel and vincristine at conventional (dorsal root ganglia and sciatic nerve) and non-conventional (skeletal muscle) CIPN sites. Investigated CIPN-positive drugs displayed intracellular accumulation contrary to CIPN-negative drugs nilotinib and methotrexate, which lacked this feature in all investigated tissues. Conclusions Hence, high unbound drug intracellular and extracellular exposure at target sites, driven by an interplay of drug transport across the endothelial and parenchymal cellular barriers, is a predisposing factor to CIPN development for CIPN-positive drugs. Critical drug-specific features of unbound drug disposition at various CIPN- sites provide invaluable insights into understanding the pharmacological/toxicological effects at the target-sites which will inform new strategies for monitoring and treatment of CIPN.
  •  
10.
  • Kurtyka, Magdalena, et al. (författare)
  • The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier
  • 2024
  • Ingår i: European Journal of Cell Biology. - : Elsevier. - 0171-9335 .- 1618-1298. ; 103:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood -brain barrier (BBB). Most molecules require either carrier- or receptor -mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium -enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBBenriched genes according to established selection criteria. As a result, we propose the high -affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
Typ av publikation
tidskriftsartikel (23)
annan publikation (2)
doktorsavhandling (2)
bokkapitel (2)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Loryan, Irena, 1977- (17)
Hammarlund-Udenaes, ... (13)
Göransson, Ulf, 1970 ... (3)
Eriksson, Camilla (3)
Hu, Yang, 1989- (3)
Buckley, Stephen T. (2)
visa fler...
Vallianatou, Theodos ... (2)
Fredriksson, Robert (2)
Hosseini, Kimia (2)
Nilsson, Anna (2)
Johansson, Inger (2)
Lampa, Erik, 1977- (1)
Svensson, M. (1)
Ingelman-Sundberg, M (1)
Sehlin, Dag, 1976- (1)
Andrén, Per E., Prof ... (1)
Artursson, Per (1)
Bertilsson, L (1)
Andrén, Per E. (1)
Hansen, K. (1)
Hammarlund-Udenaes, ... (1)
Betsholtz, Christer (1)
Shariatgorji, Mohamm ... (1)
He, Liqun (1)
Eliasson, E (1)
Mannheimer, B (1)
Andronis, Christos (1)
Silva, João Pedro (1)
Lekka, Eftychia (1)
Virvilis, Vassilis (1)
Carmo, Helena (1)
Bampali, Konstantina (1)
Ernst, Margot (1)
Richard, Jacques (1)
Carvalho, Félix (1)
Savić, Miroslav M (1)
Karlgren, Maria (1)
Jansson, Britt (1)
Sugiyama, Yuichi (1)
Fridén, Markus (1)
Shariatgorji, Reza (1)
Balayssac, David (1)
Busserolles, Jérôme (1)
Broto, Catherine (1)
Dalbos, Cristelle (1)
Prival, Laetitia (1)
Lamoine, Sylvain (1)
Richard, Damien (1)
Quintana, Mercedes (1)
Herbet, Aurélia (1)
visa färre...
Lärosäte
Uppsala universitet (29)
Karolinska Institutet (3)
Göteborgs universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (25)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy