SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Loseva Olga) "

Sökning: WFRF:(Loseva Olga)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agianian, Bogos, et al. (författare)
  • Preliminary characterization of hemolymph coagulation in Anopheles gambiae larvae
  • 2007
  • Ingår i: Developmental and Comparative Immunology. - : Elsevier BV. - 0145-305X .- 1879-0089. ; 31:9, s. 879-888
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemolymph coagulation is a first response to injury, impeding infection, and ending bleeding. Little is known about its molecular basis in insects, but clotting factors have been identified in the fruit fly Drosophila melanogaster. Here, we have begun to study coagulation in the aquatic larvae of the malaria vector mosquito Anopheles gambiae using methods developed for Drosophila. A delicate clot was seen by light microscopy, and pullout and proteomic analysis identified phenoloxidase and apolipophorin-I as major candidate clotting factors. Electron microscopic analysis confirmed clot formation and revealed it contains fine molecular sheets, most likely a result of lipophorin assembly. Phenoloxidase appears to be more critical in clot formation in Anopheles than in Drosophila. The Anopheles larval clot thus differs in formation, structure, and composition from the clot in Drosophila, confirming the need to study coagulation in different insect species to learn more about its evolution and adaptation to different lifestyles.
  •  
2.
  • Bonagas, Nadilly, et al. (författare)
  • Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress
  • 2022
  • Ingår i: NATURE CANCER. - : Springer Science and Business Media LLC. - 2662-1347. ; 3:2, s. 156-
  • Tidskriftsartikel (refereegranskat)abstract
    • The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors. Helleday and colleagues describe a nanomolar MTHFD2 inhibitor that causes replication stress and DNA damage accumulation in cancer cells via thymidine depletion, demonstrating a potential therapeutic strategy in AML tumors in vivo.
  •  
3.
  • Bredyuk, O.A., et al. (författare)
  • Three-Dimensional Polymeric Thallium(I) Morpholinedithiocarbamate [Tl2{S2CN(CH2)4O}2]n and Its Capability of Binding Gold(III) from Solutions : Chemisorption Synthesis of a Heteronuclear Gold(III)–Thallium(III) Complex of the Ionic Type, ([Au{S2CN(CH2)4O}2][TlCl4])n, the Role of Secondary Interactions Tl…O, Tl…S, and Au…S in the Supramolecular Self-Organization, 13C MAS NMR, and Thermal Behavior
  • 2017
  • Ingår i: Russian journal of coordination chemistry. - : Maik Nauka Publishing. - 1070-3284 .- 1608-3318. ; 43:10, s. 638-651
  • Tidskriftsartikel (refereegranskat)abstract
    • Crystalline polymeric thallium(I) morpholinedithiocarbamate [Tl2{S2CN(CH2)4O}2]n (I) and the heteronuclear ion–polymeric gold(III)–thalium(III) complex ([Au{S2CN(CH2)4O}2][TlCl4])n (II) are preparatively isolated and characterized by X-ray diffraction analysis and 13C MAS NMR spectroscopy. According to the X-ray diffraction data, the main structural units of compounds I and II (CIF files CCDC 1548079 and 1548080) are presented by the binuclear centrosymmetric molecule [Tl2{S2CN(CH2)4O}2], noncentrosymmetric complex cation [Au{S2CN(CH2)4O{2]+, and isomeric complex anions [TlCl4]–. The formation of the three-dimensional polymeric structure (coordination number of Tl is 7), which is not characteristic of thallium(I) dithiocarbamates, is a consequence of the participation of the secondary Tl…O and Tl…S bonds of two types in the supramolecular self-organization of compound I. Nonequivalent secondary interactions of the first type join the binuclear molecules [Tl2{S2CN(CH2)4O}2] into polymer layers, which, in turn, form the three-dimensional polymeric framework due to the secondary bonds Tl…S. The revealed ability of freshly precipitated compound I to the chemisorption of gold(III) from solutions (2 M HCl) makes it possible to obtain heteronuclear supramolecular complex II as an individual form of binding. In the structure of the latter, the pairs of stronger secondary Au…S bonds join the gold(III) cations into dimers [Au2{S2CN(CH2)4O}4]2+ of the angular structure, the structural ordering of which is achieved in the cationcationic polymeric chain ([Au2{S2CN(CH2)4O}4]2+)n of the helical type involving the pairs of less strong Au…S bonds between the adjacent binuclear units. The distorted tetrahedral anions [TlCl4]– are localized between the polymeric chains. The study of the thermal behavior of compounds I and II by simultaneous thermal analysis makes it possible to establish the character of thermal transformations of the substances and to identify Tl2S (I), TlCl, and elemental gold (II) as thermolysis products
  •  
4.
  • Bryant, Helen E, et al. (författare)
  • PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination.
  • 2009
  • Ingår i: The EMBO journal. - : Wiley. - 1460-2075 .- 0261-4189. ; 28:17, s. 2601-15
  • Tidskriftsartikel (refereegranskat)abstract
    • If replication forks are perturbed, a multifaceted response including several DNA repair and cell cycle checkpoint pathways is activated to ensure faithful DNA replication. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1) binds to and is activated by stalled replication forks that contain small gaps. PARP1 collaborates with Mre11 to promote replication fork restart after release from replication blocks, most likely by recruiting Mre11 to the replication fork to promote resection of DNA. Both PARP1 and PARP2 are required for hydroxyurea-induced homologous recombination to promote cell survival after replication blocks. Together, our data suggest that PARP1 and PARP2 detect disrupted replication forks and attract Mre11 for end processing that is required for subsequent recombination repair and restart of replication forks.
  •  
5.
  • Gad, Helge, et al. (författare)
  • MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 508:7495, s. 215-221
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bindin the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
  •  
6.
  • Green, Alanna C., et al. (författare)
  • Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells
  • 2023
  • Ingår i: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 5:4, s. 642-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase–cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a ‘folate trap’. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.
  •  
7.
  • Gustafsson, Robert, et al. (författare)
  • Crystal Structure of the Emerging Cancer Target MTHFD2 in Complex with a Substrate-Based Inhibitor
  • 2017
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 77:4, s. 937-948
  • Tidskriftsartikel (refereegranskat)abstract
    • To sustain their proliferation, cancer cells become dependent on one-carbon metabolism to support purine and thymidylate synthesis. Indeed, one of the most highly upregulated enzymes during neoplastic transformation is MTHFD2, a mitochondrial methylenetetrahydrofolate dehydrogenase and cyclohydrolase involved in one-carbon metabolism. Because MTHFD2 is expressed normally only during embryonic development, it offers a disease-selective therapeutic target for eradicating cancer cells while sparing healthy cells. Here we report the synthesis and preclinical characterization of the first inhibitor of human MTHFD2. We also disclose the first crystal structure of MTHFD2 in complex with a substrate-based inhibitor and the enzyme cofactors NAD(+) and inorganic phosphate. Our work provides a rationale for continued development of a structural framework for the generation of potent and selective MTHFD2 inhibitors for cancer treatment.
  •  
8.
  • Herold, Nikolas, et al. (författare)
  • Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies
  • 2017
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 23:2, s. 256-263
  • Tidskriftsartikel (refereegranskat)abstract
    • The cytostatic deoxycytidine analog cytarabine (ara-C) is the most active agent available against acute myelogenous leukemia (AML). Together with anthracyclines, ara-C forms the backbone of AML treatment for children and adults'. In AML, both the cytotoxicity of ara-C in vitro and the clinical response to ara-C therapy are correlated with the ability of AML blasts to accumulate the active metabolite ara-C triphosphate (ara-CTP)(2-5), which causes DNA damage through perturbation of DNA synthesis(6). Differences in expression levels of known transporters or metabolic enzymes relevant to ara-C only partially account for patient-specific differential ara-CTP accumulation in AML blasts and response to ara-C treatment(7-9). Here we demonstrate that the deoxynucleoside triphosphate (dNTP) triphosphohydrolase SAM domain and HD domain 1 (SAMHD1) promotes the detoxification of intracellular ara-CTP pools. Recombinant SAMHD1 exhibited ara-CTPase activity in vitro, and cells in which SAMHD1 expression was transiently reduced by treatment with the simian immunodeficiency virus (SIV) protein Vpx were dramatically more sensitive to ara-C-induced cytotoxicity. CRISPR-Cas9-mediated disruption of the gene encoding SAMHD1 sensitized cells to ara-C, and this sensitivity could be abrogated by ectopic expression of wild-type (WT), but not dNTPase-deficient, SAMHD1. Mouse models of AML lacking SAMHD1 were hypersensitive to ara-C, and treatment ex vivo with Vpx sensitized primary patient derived AML blasts to ara-C. Finally, we identified SAMHD1 as a risk factor in cohorts of both pediatric and adult patients with de novo AML who received ara-C treatment. Thus, SAMHD1 expression levels dictate patient sensitivity to ara-C, providing proof-of-concept that the targeting of SAMHD1 by Vpx could be an attractive therapeutic strategy for potentiating ara-C efficacy in hematological malignancies.
  •  
9.
  • Ivanov, Alexander V., et al. (författare)
  • Synthesis, Supramolecular Self-Organization, and Thermal Behavior of Gold(III)–Thallium(III) Heteronuclear Complexes ([Au{S2CN(CH3)2}2][TlCl4])2 and ([Au{S2CN(C2H5)2}2][TlCl4]) n
  • 2016
  • Ingår i: Russian Journal of Inorganic Chemistry. - 0036-0236 .- 1531-8613. ; 61:6, s. 755-765
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of polymeric thallium(I) dimethyl- and diethyldithiocarbamates with [AuCl4]– in 2 M HCl has been studied. Heteropolynuclear complexes ([Au{S2CN(CH3)2}2][TlCl4])2 (I) and ([Au{S2CN(C2H5)2}2][TlCl4]) n (II) have been preparatively isolated from chemisorption systems [Tl2{S2CNR2}2] n –Au3+/2 M HCl (R = CH3, C2H5). These compounds have been characterized by 13C CP/MAS NMR, and their crystal and supramolecular structures have been determined by X-ray crystallography. Basic structural units of compounds I and II are square-planar [Au{S2CNR2}2]+ cations (with S,S'- bidentate coordination of two Dtc ligands to the gold atom) and distorted tetrahedral [TlCl4]–anions. In supramolecular self-organization, the decisive role is played by relatively weak secondary interactions Au⋯S and Au⋯Cl. With the use of simultaneous thermal analysis, the thermal behavior of I and II have been studied, which enabled the elucidation of temperature-induced transformations and identification of TlCl and reduced gold among the thermolysis products.
  •  
10.
  • Korayem, Ahmed, et al. (författare)
  • Evidence for an immune function of lepidopteran silk proteins
  • 2007
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 352:2, s. 317-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemolymph coagulation stops bleeding and protects against infection. Clotting factors include both proteins that are conserved during evolution as well as more divergent proteins in different species. Here we show that several silk proteins also appear in the clot of the greater wax moth Galleria mellonella. RT-PCR analysis reveals that silk proteins are expressed in immune tissues and induced upon wounding in both Galleria and Ephestia kuehniella, a second pyralid moth. Our results support the idea that silk proteins were co-opted for immunity and coagulation during evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (27)
Typ av innehåll
refereegranskat (27)
Författare/redaktör
Loseva, Olga (22)
Helleday, Thomas (18)
Jemth, Ann-Sofie (17)
Scobie, Martin (11)
Wiita, Elisee (11)
Stenmark, Pål (9)
visa fler...
Warpman Berglund, Ul ... (8)
Lundbäck, Thomas (7)
Llona-Minguez, Sabin (7)
Häggblad, Maria (6)
Kalderen, Christina (6)
Koolmeister, Tobias (6)
Almlöf, Ingrid (6)
Jenmalm Jensen, Anni ... (5)
Ivanov, Alexander, V (5)
Martens, Ulf (5)
Baranczewski, Pawel (5)
Sanjiv, Kumar (5)
Homan, Evert J. (5)
Loseva, Olga V. (5)
Homan, Evert (5)
Wallner, Olov (5)
Henriksson, Martin (4)
Artursson, Per (4)
Axelsson, Hanna (4)
Altun, Mikael (4)
Lundgren, Bo (4)
Pham, Therese (4)
Höglund, Andreas (4)
Sarno, Antonio (4)
Rasti, Azita (4)
Desroses, Matthieu (4)
Valerie, Nicholas C. ... (4)
Visnes, Torkild (4)
Lesch, Christine (3)
Dushay, Mitchell S. (3)
Svensson, Richard (3)
Jeppsson, Fredrik (3)
Krokan, Hans E (3)
Antzutkin, Oleg N. (3)
Theopold, Ulrich (3)
Karsten, Stella (3)
Bonagas, Nadilly (3)
Michel, Maurice (3)
Hagenkort, Anna (3)
Masuyer, Geoffrey (3)
Eshtad, Saeed (3)
Mortusewicz, Oliver (3)
Rudd, Sean G. (3)
Rodina, Tatyana A. (3)
visa färre...
Lärosäte
Stockholms universitet (20)
Karolinska Institutet (16)
Uppsala universitet (9)
Lunds universitet (6)
Luleå tekniska universitet (5)
Kungliga Tekniska Högskolan (2)
visa fler...
Södertörns högskola (2)
Göteborgs universitet (1)
Umeå universitet (1)
Linköpings universitet (1)
RISE (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (21)
Medicin och hälsovetenskap (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy