SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lovelock Catherine E.) "

Sökning: WFRF:(Lovelock Catherine E.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maxwell, Tania L., et al. (författare)
  • Global dataset of soil organic carbon in tidal marshes
  • 2023
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1 in the top 30 cm and 231 ± 134 Mg SOC ha−1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.
  •  
2.
  • Cumming, Graeme S., et al. (författare)
  • Research priorities for the sustainability of coral-rich western Pacific seascapes
  • 2023
  • Ingår i: Regional Environmental Change. - 1436-3798 .- 1436-378X. ; 23:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 (‘Life below Water’) of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-ecological unpredictability and risk, scientists and policymakers working towards SDG 14 in the Asia–Pacific region need to know: (1) How are seascapes changing? (2) What can global society do about these changes? and (3) How can science and society together achieve sustainable seascape futures? Through a horizon scan, we identified nine emerging research priorities that clarify potential research contributions to marine sustainability in locations with high coral reef abundance. They include research on seascape geological and biological evolution and adaptation; elucidating drivers and mechanisms of change; understanding how seascape functions and services are produced, and how people depend on them; costs, benefits, and trade-offs to people in changing seascapes; improving seascape technologies and practices; learning to govern and manage seascapes for all; sustainable use, justice, and human well-being; bridging communities and epistemologies for innovative, equitable, and scale-crossing solutions; and informing resilient seascape futures through modelling and synthesis. Researchers can contribute to the sustainability of tropical seascapes by co-developing transdisciplinary understandings of people and ecosystems, emphasising the importance of equity and justice, and improving knowledge of key cross-scale and cross-level processes, feedbacks, and thresholds. 
  •  
3.
  • Grinham, Alistair, et al. (författare)
  • The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia
  • 2018
  • Ingår i: Hydrology and Earth System Sciences. - : COPERNICUS GESELLSCHAFT MBH. - 1027-5606 .- 1607-7938. ; 22:10, s. 5281-5298
  • Tidskriftsartikel (refereegranskat)abstract
    • Emissions from flooded land represent a direct source of anthropogenic greenhouse gas (GHG) emissions. Methane emissions from large, artificial water bodies have previously been considered, with numerous studies assessing emission rates and relatively simple procedures available to determine their surface area and generate upscaled emissions estimates. In contrast, the role of small artificial water bodies (ponds) is very poorly quantified, and estimation of emissions is constrained both by a lack of data on their spatial extent and a scarcity of direct flux measurements. In this study, we quantified the total surface area of water bodies amp;lt; 10(5) m(2) across Queensland, Australia, and emission rates from a variety of water body types and size classes. We found that the omission of small ponds from current official land use data has led to an underestimate of total flooded land area by 24 %, of small artificial water body surface area by 57% and of the total number of artificial water bodies by 1 order of magnitude. All studied ponds were significant hotspots of methane production, dominated by ebullition (bubble) emissions. Two scaling approaches were developed with one based on pond primary use (stock watering, irrigation and urban lakes) and the other using size class. Both approaches indicated that ponds in Queensland alone emit over 1.6 Mt CO2 eq.yr(-1), equivalent to 10% of the states entire land use, land use change and forestry sector emissions. With limited data from other regions suggesting similarly large numbers of ponds, high emissions per unit area and under-reporting of spatial extent, we conclude that small artificial water bodies may be a globally important missing source of anthropogenic greenhouse gas emissions.
  •  
4.
  • Mcleod, Elizabeth, et al. (författare)
  • A blueprint for blue carbon : toward an improved understanding of the role of vegetated coastal habitats in sequestering CO(2)
  • 2011
  • Ingår i: Frontiers in Ecology and the Environment. - : Wiley. - 1540-9295 .- 1540-9309. ; 9:10, s. 552-560
  • Forskningsöversikt (refereegranskat)abstract
    • Recent research has highlighted the valuable role that coastal and marine ecosystems play in sequestering carbon dioxide (CO(2)). The carbon (C) sequestered in vegetated coastal ecosystems, specifically mangrove forests, seagrass beds, and salt marshes, has been termed blue carbon. Although their global area is one to two orders of magnitude smaller than that of terrestrial forests, the contribution of vegetated coastal habitats per unit area to long-term C sequestration is much greater, in part because of their efficiency in trapping suspended matter and associated organic C during tidal inundation. Despite the value of mangrove forests, seagrass beds, and salt marshes in sequestering C, and the other goods and services they provide, these systems are being lost at critical rates and action is urgently needed to prevent further degradation and loss. Recognition of the C sequestration value of vegetated coastal ecosystems provides a strong argument for their protection and restoration; however, it is necessary to improve scientific understanding of the underlying mechanisms that control C sequestration in these ecosystems. Here, we identify key areas of uncertainty and specific actions needed to address them.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy