SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lu Jingyao) "

Sökning: WFRF:(Lu Jingyao)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Hai, et al. (författare)
  • Milankovitch theory and monsoon
  • 2022
  • Ingår i: The Innovation. - : Elsevier BV. - 2666-6758. ; 3:6
  • Forskningsöversikt (refereegranskat)abstract
    • The widely accepted “Milankovitch theory” explains insolation-induced waxing and waning of the ice sheets and their effect on the global climate on orbital timescales. In the past half century, however, the theory has often come under scrutiny, especially regarding its “100-ka problem.” Another drawback, but the one that has received less attention, is the “monsoon problem,” which pertains to the exclusion of monsoon dynamics in classic Milankovitch theory even though the monsoon prevails over the vast low-latitude (∼30° N to ∼30° S) region that covers half of the Earth's surface and receives the bulk of solar radiation. In this review, we discuss the major issues with the current form of Milankovitch theory and the progress made at the research forefront. We suggest shifting the emphasis from the ultimate outcomes of the ice volume to the causal relationship between changes in northern high-latitude insolation and ice age termination events (or ice sheet melting rate) to help reconcile the classic “100-ka problem.” We discuss the discrepancies associated with the characterization of monsoon dynamics, particularly the so-called “sea-land precession-phase paradox” and the “Chinese 100-ka problem.” We suggest that many of these discrepancies are superficial and can be resolved by applying a holistic “monsoon system science” approach. Finally, we propose blending the conventional Kutzbach orbital monsoon hypothesis, which calls for summer insolation forcing of monsoons, with Milankovitch theory to formulate a combined “Milankovitch-Kutzbach hypothesis” that can potentially explain the dual nature of orbital hydrodynamics of the ice sheet and monsoon systems, as well as their interplays and respective relationships with the northern high-latitude insolation and inter-tropical insolation differential.
  •  
2.
  • Li, Furong, et al. (författare)
  • A Review of Relative Pollen Productivity Estimates From Temperate China for Pollen-Based Quantitative Reconstruction of Past Plant Cover
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Model-based quantitative reconstruction of past plant cover in Europe has shown great potential for: (i) testing hypotheses related to Holocene vegetation dynamics, biodiversity, and their relationships with climate and land use; (ii) studying long term interactions between climate and land use. Similar model-based quantitative reconstruction of plant cover in China has been restricted due to the lack of standardized datasets of existing estimates of relative pollen productivity (RPP). This study presents the first synthesis of all RPP values available to date for 39 major plant taxa from temperate China and proposes standardized RPP datasets that can be used for model-based quantitative reconstructions of past plant cover using fossil pollen records for the region. We review 11 RPP studies in temperate China based on modern pollen and related vegetation data around the pollen samples. The study areas include meadow, steppe and desert vegetation, various woodland types, and cultural landscapes. We evaluate the strategies of each study in terms of selection of study areas and distribution of study sites; pollen- and vegetation-data collection in field; vegetation-data collection from satellite images and vegetation maps; and data analysis. We compare all available RPP estimates, select values based on precise rules and calculate mean RPP estimates. We propose two standardized RPP datasets for 31 (Alt1) and 29 (Alt2) plant taxa. The ranking of mean RPPs (Alt-2) relative to Poaceae (= 1) for eight major taxa is: Artemisia (21) > Pinus (18.4) > Betula (12.5) > Castanea (11.5) > Elaeagnaceae (8.8) > Juglans (7.5) > Compositae (4.5) > Amaranthaceae/Chenopodiaceae (4). We conclude that although RPPs are comparable between Europe and China for some genera and families, they can differ very significantly, e.g., Artemisia, Compositae, and Amaranthaceae/Chenopodiaceae. For some taxa, we present the first RPP estimates e.g. Castanea, Elaeagnaceae, and Juglans. The proposed standardized RPP datasets are essential for model-based reconstructions of past plant cover using fossil pollen records from temperate China.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy