SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luecken M) "

Sökning: WFRF:(Luecken M)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almet, A, et al. (författare)
  • A roadmap for the human skin cell atlas
  • 2023
  • Ingår i: JOURNAL OF INVESTIGATIVE DERMATOLOGY. - 0022-202X. ; 143:9, s. B10-B10
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Muus, Christoph, et al. (författare)
  • Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:3, s. 546-559
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention. An integrated analysis of over 100 single-cell and single-nucleus transcriptomics studies illustrates severe acute respiratory syndrome coronavirus 2 viral entry gene coexpression patterns across different human tissues, and shows association of age, smoking status and sex with viral entry gene expression in respiratory cell populations.
  •  
3.
  • Almet, Axel A., et al. (författare)
  • A Roadmap for a Consensus Human Skin Cell Atlas and Single-Cell Data Standardization
  • 2023
  • Ingår i: Journal of Investigative Dermatology. - : Elsevier. - 0022-202X .- 1523-1747. ; 143:9, s. 1667-1677
  • Forskningsöversikt (refereegranskat)abstract
    • Single-cell technologies have become essential to driving discovery in both basic and translational investigative dermatology. Despite the multitude of available datasets, a central reference atlas of normal human skin, which can serve as a reference resource for skin cell types, cell states, and their molecular signatures, is still lacking. For any such atlas to receive broad acceptance, participation by many investigators during atlas construction is an essential prerequisite. As part of the Human Cell Atlas project, we have assembled a Skin Biological Network to build a consensus Human Skin Cell Atlas and outline a roadmap toward that goal. We define the drivers of skin diversity to be considered when selecting sequencing datasets for the atlas and list practical hurdles during skin sampling that can result in data gaps and impede comprehensive representation and technical considerations for tissue processing and computational analysis, the accounting for which should minimize biases in cell type enrichments and exclusions and decrease batch effects. By outlining our goals for Atlas 1.0, we discuss how it will uncover new aspects of skin biology.
  •  
4.
  •  
5.
  • Luecken, Malte D., et al. (författare)
  • The discovAIR project : a roadmap towards the Human Lung Cell Atlas
  • 2022
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 60:2
  • Forskningsöversikt (refereegranskat)abstract
    • The Human Cell Atlas (HCA) consortium aims to establish an atlas of all organs in the healthy human body at single-cell resolution to increase our understanding of basic biological processes that govern development, physiology and anatomy, and to accelerate diagnosis and treatment of disease. The Lung Biological Network of the HCA aims to generate the Human Lung Cell Atlas as a reference for the cellular repertoire, molecular cell states and phenotypes, and cell-cell interactions that characterise normal lung homeostasis in healthy lung tissue. Such a reference atlas of the healthy human lung will facilitate mapping the changes in the cellular landscape in disease. The discovAIR project is one of six pilot actions for the HCA funded by the European Commission in the context of the H2020 framework programme. discovAIR aims to establish the first draft of an integrated Human Lung Cell Atlas, combining single-cell transcriptional and epigenetic profiling with spatially resolving techniques on matched tissue samples, as well as including a number of chronic and infectious diseases of the lung. The integrated Human Lung Cell Atlas will be available as a resource for the wider respiratory community, including basic and translational scientists, clinical medicine, and the private sector, as well as for patients with lung disease and the interested lay public. We anticipate that the Human Lung Cell Atlas will be the founding stone for a more detailed understanding of the pathogenesis of lung diseases, guiding the design of novel diagnostics and preventive or curative interventions.
  •  
6.
  • Sikkema, Lisa, et al. (författare)
  • An integrated cell atlas of the lung in health and disease
  • 2023
  • Ingår i: Nature Medicine. - : Springer Nature. - 1078-8956 .- 1546-170X. ; 29:6, s. 1563-1577
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1 + profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.
  •  
7.
  •  
8.
  • Popovski, Petar, et al. (författare)
  • EU FP7 INFSO-ICT-317669 METIS, D2.2 Novel radio link concepts and state of the art analysis
  • 2013
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This document provides a detailed overview of the Radio Link concepts being developed in METIS as well as a detailed analysis of the related state of the art. For each of the research topics identified for the radio link research covering flexible air interface, new waveforms,modulation and coding techniques as well as multiple access, medium access control and enablers for radio resource management, a detailed description of the aspects to be investigated will be given, going beyond the limits imposed by the systems operated today and their planned evolutions. The state of the art analysis, which is conducted for each of the research topics separately, covers current standards, their future evolutions as well as latest academic research. Elaborating on how the approaches followed in the radio link research may advance this state of the art carves a promising track towards innovative solutions addressing the challenges of future wireless communication.
  •  
9.
  • Popovski, Petar, et al. (författare)
  • EU FP7 INFSO-ICT-317669 METIS, D2.3 Components of a new air interface - building blocks and performance
  • 2014
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This document provides intermediate results of the concepts being developed in the radio link research of METIS. For each of the technology components (TeC) within the technology component clusters (TeCC), covering flexible air interface, new waveforms, modulation and coding techniques as well as multiple access, medium access control and enablers for radio resource management, key findings and conclusions collected so far are summarized in section 2. Continuative descriptions and research outcomes are given in the annex and referred publications.The results presented here will be extended in the further progress of the project, and they will be used in the next phase of the project to develop and refine the overall METIS system concept instantiated by the horizontal topics. The suitability of the single technology components for the overall system design being able to meet the wide range of requirements for 5G will then be evaluated.
  •  
10.
  • Schmidt, Sebastian, et al. (författare)
  • A reversible state of hypometabolism in a human cellular model of sporadic Parkinson's disease
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the alpha-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD. Mitochondrial dysfunction is a contributing factor in Parkinson's disease. Here the authors carry out a multilayered omics analysis of Parkinson's disease patient-derived neuronal cells, which reveals a reversible hypometabolism mediated by alpha-ketoglutarate dehydrogenase deficiency, which is correlated with disease progression in the donating patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy