SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lund Myhre Cathrine) "

Sökning: WFRF:(Lund Myhre Cathrine)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adamaki, Angeliki, et al. (författare)
  • ENVRI-FAIR Project brief on implementation of Open Science and EOSC targets
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In the ENVRI-FAIR project brief on implementation of Open Science and EOSC targets the current achievements and planned activities in ENVRI-FAIR are summarised with regard to a) Integration with the EOSC infrastructure b) FAIR principles implementation and repositories c) Technical, semantic, legal and organisational interoperability d) Stewardship of data and e) Cross-cluster collaboration activities and achievements.
  •  
2.
  • Bergamaschi, Peter, et al. (författare)
  • European Obspack compilation of atmospheric carbon dioxide data from ICOS and non-ICOS European stations for the period 1972-2023; : obspack_co2_466_GLOBALVIEWplus_v8.0_2023-04-26
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This data package contains high accuracy CO2 dry air mole fractions from 58 ICOS and non-ICOS European observatories at in total 132 observation levels, collected by the ICOS Atmosphere Thematic Centre (ATC) and provided by the station contributors. The package is part of the Globalviewplus v8.0 data product, released in 2022 and is intended for use in carbon cycle inverse modeling, model evaluation, and satellite validation studies. Please report errors and send comments regarding this product to the ObsPack originators. Please read carefully the ObsPack Fair Use statement and cite appropriately. This is the sixth release of the GLOBALVIEWplus (GV+) cooperative data product. Please review the release notes for this product at www.esrl.noaa.gov/gmd/ccgg/obspack/release_notes.html. Metadata for this product are available at https://commons.datacite.org/doi.org/10.18160/CEC4-CAGK. Please visit http://www.gml.noaa.gov/ccgg/obspack/ for more information.
  •  
3.
  • Collaud Coen, Martine, et al. (författare)
  • Multidecadal trend analysis of in situ aerosol radiative properties around the world
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:14, s. 8867-8908
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Angstrom exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010-2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient - there is a shift to statistically significant negative trends in 2009-2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.
  •  
4.
  • Espen Yttri, Karl, et al. (författare)
  • Trends, composition, and sources of carbonaceous aerosol at the Birkenes Observatory, northern Europe, 2001-2018
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:9, s. 7149-7170
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 18 years (2001-2018) of aerosol measurements, including organic and elemental carbon (OC and EC), organic tracers (levoglucosan, arabitol, mannitol, trehalose, glucose, and 2-methyltetrols), trace elements, and ions, at the Birkenes Observatory (southern Norway) - a site representative of the northern European region. The OC=EC (2001-2018) and the levoglucosan (2008-2018) time series are the longest in Europe, with OC=EC available for the PM10, PM2:5 (fine), and PM10-2:5 (coarse) size fractions, providing the opportunity for a nearly 2-decade-long assessment. Using positive matrix factorization (PMF), we identify seven carbonaceous aerosol sources at Birkenes: mineraldust- dominated aerosol (MIN), traffic/industry-like aerosol (TRA/IND), short-range-transported biogenic secondary organic aerosol (BSOASRT), primary biological aerosol particles (PBAP), biomass burning aerosol (BB), ammoniumnitrate- dominated aerosol (NH4NO3), and (one low carbon fraction) sea salt aerosol (SS). We observed significant (p < 0:05), large decreases in EC in PM10 (-3:9%yr-1) and PM2:5 (-4:2%yr-1) and a smaller decline in levoglucosan (-2:8%yr-1), suggesting that OC=EC from traffic and industry is decreasing, whereas the abatement of OC=EC from biomass burning has been slightly less successful. EC abatement with respect to anthropogenic sources is further supported by decreasing EC fractions in PM2:5 (-3:9%yr-1) and PM10 (-4:5%yr-1). PMF apportioned 72% of EC to fossil fuel sources; this was further supported by PMF applied to absorption photometer data, which yielded a two-factor solution with a low aerosol ngstr m exponent (AAED0.93) fraction, assumed to be equivalent black carbon from fossil fuel combustion (eBCFF), contributing 78% to eBC mass. The higher AAE fraction (AAED2.04) is likely eBC from BB (eBCBB). Source-receptor model calculations (FLEXPART) showed that continental Europe and western Russia were the main source regions of both elevated eBCBB and eBCFF. Dominating biogenic sources explain why there was no downward trend for OC. A relative increase in the OC fraction in PM2:5 (C3:2%yr-1) and PM10 (C2:4%yr-1) underscores the importance of biogenic sources at Birkenes (BSOA and PBAP), which were higher in the vegetative season and dominated both fine (53 %) and coarse (78 %) OC. Furthermore, 77 %-91% of OC in PM2:5, PM10-2:5, and PM10 was attributed to biogenic sources in summer vs. 22 %- 37% in winter. The coarse fraction had the highest share of biogenic sources regardless of season and was dominated by PBAP, except in winter. Our results show a shift in the aerosol composition at Birkenes and, thus, also in the relative source contributions. The need for diverse offline and online carbonaceous aerosol speciation to understand carbonaceous aerosol sources, including their seasonal, annual, and long-term variability, has been demonstrated.
  •  
5.
  • Heiskanen, Jouni, et al. (författare)
  • The Integrated Carbon Observation System in Europe
  • 2022
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 103:3, s. 855-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers' decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
  •  
6.
  • Laj, Paolo, et al. (författare)
  • A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4353-4392
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
  •  
7.
  • Papale, Dario, et al. (författare)
  • Standards and Open Access are the ICOS Pillars Reply to "Comments on 'The Integrated Carbon Observation System in Europe'"
  • 2023
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 104:12, s. 953-955
  • Tidskriftsartikel (refereegranskat)abstract
    • In his comment (Kowalski 2023) on our recent publication (Heiskanen et al. 2022) where we present the Integrated Carbon Observation System (ICOS) research infrastructure, Andrew Kowalski introduces three important and, in our opinion, different potential issues in the definition, collection, and availability of field measurements made by the ICOS network, and he proposes possible solutions to these issues.
  •  
8.
  • Petzold, Andreas, et al. (författare)
  • ENVRI-Hub Design and Architecture White Paper
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • ENVRI-FAIR is the connection of the ESFRI Cluster of Environmental Research Infrastructures (ENVRI) to the European Open Science Cloud (EOSC). The high-impact ambition of ENVRI-FAIR is to establish the technical preconditions for the successful implementation of a virtual, federated machine-to-machine interface to access environmental data and services provided by the contributing ENVRIs. This interface is called the ENVRI-Hub. Full integration of services across RIs and even subdomains is continuously progressing at ENVRIs with focus on environmental data and scientific research objectives. Each RI is specialized in a specific number of parameters related to its specific competences. For users that require a broader or the full spectrum of environmental parameters, the ENVRI-Hub will offer a platform that reflects the complexity and diversity of the ENVRI landscape, while preserving their specific structures and addressing the requirements they were designed for.The ENVRI-Hub will be a federated system of harmonized subdomain/RI-specific systems of data policies and management, access platforms and virtual research environments. The system will be completely open source, modular and scalable and build on the experience available in the consortium and already operational systems. Figure 1 shows the key features of the ENVRI-Hub.The ENVRI-Hub community metadata and data store is foreseen to be based on semantic web technology, ontologies, and open linked data, allowing integration of the vocabularies and metadata standards developed in the implementation work packages of ENVRI-FAIR. The cross-subdomain development will create large benefits in efficiency and robustness of the ENVRI-hub system. It will enable true interoperability of access to metadata and data objects across the RIs and subdomains and thus facilitate the development of (joint) higher-level services. By following a strict modular design, the developments can be (re-)used in the different RIs. All components should contain couplers to the EOSC services, like AAI, data storage solutions and catalogue of services, to enable the seamless integration of ENVRIs data and services into EOSC.
  •  
9.
  • Petzold, Andreas, et al. (författare)
  • Opinion : New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 24:9, s. 5369-5388
  • Forskningsöversikt (refereegranskat)abstract
    • The acquisition and dissemination of essential information for understanding global biogeochemical interactions between the atmosphere and ecosystems and how climate-ecosystem feedback loops may change atmospheric composition in the future comprise a fundamental prerequisite for societal resilience in the face of climate change. In particular, the detection of trends and seasonality in the abundance of greenhouse gases and short-lived climate-Active atmospheric constituents is an important aspect of climate science. Therefore, easy and fast access to reliable, long-Term, and high-quality observational environmental data is recognised as fundamental to research and the development of environmental forecasting and assessment services. In our opinion article, we discuss the potential role that environmental research infrastructures in Europe (ENVRI RIs) can play in the context of an integrated global observation system. In particular, we focus on the role of the atmosphere-centred research infrastructures ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure), IAGOS (In-service Aircraft for a Global Observing System), and ICOS (Integrated Carbon Observation System), also referred to as ATMO-RIs, with their capabilities for standardised collection and provision of long-Term and high-quality observational data, complemented by rich metadata. The ATMO-RIs provide data through open access and offer data interoperability across different research fields including all fields of environmental sciences and beyond. As a result of these capabilities in data collection and provision, we elaborate on the novel research opportunities in atmospheric sciences which arise from the combination of open-Access and interoperable observational data, tools, and technologies offered by data-intensive science and the emerging collaboration platform ENVRI-Hub, hosted by the European Open Science Cloud (EOSC).
  •  
10.
  • Platt, Stephen M., et al. (författare)
  • Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:5, s. 3321-3369
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy