SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lundberg Emma Associate Professor) "

Sökning: WFRF:(Lundberg Emma Associate Professor)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wiking, Mikaela (författare)
  • Spatial proteome profiling of the compartments of the human cell using an antibody-based approach
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The human cell is complex, with countless processes ongoing in parallel in specialized compartments, the organelles. Cells can be studied in vitro by using immortalized cell lines that represent cells in vivo to a varying degree. Gene expression varies between cell types and an average cell line expresses around 10,000-12,000 genes, as measured with RNA sequencing. These genes encode the cell’s proteome; the full set of proteins that perform functions in the cell. In paper I we show that RNA sequencing is a necessary tool for studying the proteome of the human cell.By studying the proteome, and proteins’ localization in the cell, information can be assembled on how the cell functions. Image-based methods allow for detailed spatial resolution of protein localization as well as enable the study of temporal events. Visualization of a protein can be accomplished by using either a cell line that is transfected to express the protein with a fluorescent tag, or by targeting the protein with an affinity reagent such as an antibody. In paper II we present subcellular data for a majority of the human proteins, showing that there is a high degree of complexity in regard to where proteins localize in the cell.Cellular energy is generated in the mitochondria, an important organelle that is also active in many other different functions. Today approximately only a third of the estimated mitochondrial proteome has been validated experimentally, indicating that there is much more to understand with regard to the functions of the mitochondria. In paper III we explore the mitochondrial proteome, based on the results of paper II. We also present a method for sublocalizing proteins to subcompartments that can be performed in a high-throughput manner.To conclude, this thesis shows that transcriptomics is a useful tool for proteome-wide subcellular localization, and presents high-resolution spatial distribution data for the human cell with a deeper analysis of the mitochondrial proteome.
  •  
2.
  • Danielsson, Frida, 1984- (författare)
  • Integration of RNA and protein expression profiles to study human cells
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cellular life is highly complex. In order to expand our understanding of the workings of human cells, in particular in the context of health and disease, detailed knowledge about the underlying molecular systems is needed. The unifying theme of this thesis concerns the use of data derived from sequencing of RNA, both within the field of transcriptomics itself and as a guide for further studies at the level of protein expression. In paper I, we showed that publicly available RNA-seq datasets are consistent across different studies, requiring only light processing for the data to cluster according to biological, rather than technical characteristics. This suggests that RNA-seq has developed into a reliable and highly reproducible technology, and that the increasing amount of publicly available RNA-seq data constitutes a valuable resource for meta-analyses. In paper II, we explored the ability to extrapolate protein concentrations by the use of RNA expression levels. We showed that mRNA and corresponding steady-state protein concentrations correlate well by introducing a gene-specific RNA-to-protein conversion factor that is stable across various cell types and tissues. The results from this study indicate the utility of RNA-seq also within the field of proteomics.The second part of the thesis starts with a paper in which we used transcriptomics to guide subsequent protein studies of the molecular mechanisms underlying malignant transformation. In paper III, we applied a transcriptomics approach to a cell model for defined steps of malignant transformation, and identified several genes with interesting expression patterns whose corresponding proteins were further analyzed with subcellular spatial resolution. Several of these proteins were further studied in clinical tumor samples, confirming that this cell model provides a relevant system for studying cancer mechanisms. In paper IV, we continued to explore the transcriptional landscape in the same cell model under moderate hypoxic conditions.To conclude, this thesis demonstrates the usefulness of RNA-seq data, from a transcriptomics perspective and beyond; to guide in analyses of protein expression, with the ultimate goal to unravel the complexity of the human cell, from a holistic point of view.
  •  
3.
  • Skogs, Marie, 1981- (författare)
  • Antibody-based subcellular localization of the human proteome
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis describes the use of antibodies and immunofluorescence for subcellular localization of proteins. The key objective is the creation of an open-source atlas with information on the subcellular location of every human protein. Knowledge of the spatial distribution and the precise location of a protein within a cell is important for its functional characterization, and describing the human proteome in terms of compartment proteomes is important to decipher cellular organization and function. Immunofluorescence and confocal microscopy of cultured cells were used for high-resolution detection of proteins on a high-throughput scale. Critical to immunofluorescence results are sample preparation and specific antibodies. Antibody staining of cells requires fixation and permeabilization, both of which can result in loss or redistribution of proteins and masking of epitopes. A high-throughput approach demands a standardized protocol suitable for the majority of proteins across cellular compartments. Paper I presents an evaluation of sample preparation techniques from which such a single fixation and permeabilization protocol was optimized. Paper II describes the results from applying this protocol to 4000 human proteins in three cell lines of different origin. Paper III presents a strategy for application-specific antibody validation. Antibodies are the key reagents in immunofluorescence, but all antibodies have potential for off-target binding and should be validated thoroughly. Antibody performance varies across sample types and applications due to the competition present and the effect of the sample preparation on antigen accessibility. In this paper application-specific validation for immunofluorescence was conducted using colocalization with fluorescently tagged protein in transgenic cell lines. 
  •  
4.
  • Stadler, Charlotte, 1982- (författare)
  • Towards subcellular localization of the human proteome using bioimaging
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Since the publication of the complete sequence of the human genome in 2003 there has been great interest in exploring the functions of the proteins encoded by the genes. To reveal the function of each and every protein, investigation of protein localization at the subcellular level has become a central focus in this research area, since the localization and function of a protein is closely related. The objective of the studies presented in this doctoral thesis was to systematically explore the human proteome at the subcellular level using bioimaging and to develop techniques for validation of the results obtained.A common imaging technique for protein detection is immunofluorescence (IF), where antibodies are used to target proteins in fixated cells. A fixation protocol suitable for large-scale IF studies was developed and optimized to work for a broad set of proteins. As the technique relies on antibodies, validation of their specificity to the target protein is crucial. A platform based on siRNA gene silencing in combination with IF was set-up to evaluate antibody specificity by quantitative image analysis before and after suppression of its target protein. As a proof of concept, the platform was then used for validation of 75 antibodies, proving it to be applicable for validation of antibodies in a systematic manner.Because of the fixation, there is a common concern about how well IF data reflects the in vivo subcellular distribution of proteins. To address this, 500 proteins were tagged with green fluorescent protein (GFP) and used to compare protein localization results between IF to those achieved using GFP tagged proteins in live cells. It was concluded that protein localization data from fixated cells satisfactory represented the situation in vivo and together exhibit a powerful approach for confirming localizations of yet uncharacterized proteins.Finally, a global analysis based on IF data of approximately 20 % of the human proteome was performed, providing a first overview of the subcellular landscape in three different cell lines. It was found that the intracellular distribution of proteins is complex, with many proteins occurring in several organelles. The results also confirmed the close relationship between protein function and localization, which in a way further strengthens the accuracy of the IF approach for detection of proteins at the subcellular level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy