SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luo Liping) "

Sökning: WFRF:(Luo Liping)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Xuelong, et al. (författare)
  • Investigation of Precipitation Process in the Water Vapor Channel of the Yarlung Zsangbo Grand Canyon
  • 2024
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 105:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Yarlung Zsangbo Grand Canyon (YGC) is an important pathway for water vapor transport from southern Asia to the Tibetan Plateau (TP). This area exhibits one of the highest frequencies of convective activity in China, and precipitation often induces natural disasters in local communities, which can dramatically affect their livelihoods. In addition, the produced precipitation gives rise to vast glaciers and large rivers around the YGC. In 2018, the Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team to conduct an "investigation of the precipitation process in the water vapor channel of the Yarlung Zsangbo Grand Canyon" (INVC) in the southeastern TP. This team subsequently established a comprehensive observation system of land-air interaction, water vapor, clouds, and rainfall activity in the YGC. This paper introduces the developed observation system and summarizes the preliminary results obtained during the first two years of the project. Using this INVC observation network, herein, we focus on the development of rainfall events on the southeastern TP. This project also helps to monitor geohazards in the key area of the Sichuan-Tibet railway, which traverses the northern YGC. The observation datasets will benefit future research on mountain meteorology.
  •  
2.
  • Fan, Jianming, et al. (författare)
  • Hydrothermal-assisted synthesis of Li-rich layered oxide microspheres with high capacity and superior rate-capability as a cathode for lithium-ion batteries
  • 2015
  • Ingår i: Electrochimica Acta. - 0013-4686. ; 173, s. 7-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Li-rich layered oxide materials possess high voltage and high specific capacity, which makes them attractive cathode candidates for lithium-ion batteries. However, they still suffer from a poor rate capability, which seriously blocks their widespread practical applications. In this work, Li(Li0.167Mn0.5Co0.167Ni0.167)O2 microspheres were synthesized by a hydrothermal-assisted method, in which Ni-Co-Mn-based microspherical precursors obtained by a hydrothermal process with polyethylene glycol-600 (PEG-600) as a surfactant were mixed with lithium sources and then sintered to yield the final products. It is found that the as-prepared Li-rich layered oxide microspheres exhibit high discharge capacity and superior rate performance: delivering an initial discharge capacity of 292 mAh g−1 at a current density of 20 mA g−1, 189 mAh g−1 at a current density of 600 mA g−1 and 142 mAh g−1 at a current density of 2000 mA g−1 (10C), which are better than that of the sample as-prepared by co-precipitation method. The high discharge capacity and improved rate-capability were beneficial from the microspheres assembled by uniform primary particles around 250 nm, more reversible redox and better electrode kinetics comparing to that of the co-precipitation sample. The preparation strategy reported here may offer hints for achieving various advanced Li-rich layered composite materials that would be used in high-performance energy storage.
  •  
3.
  • Fu, Chaochao, et al. (författare)
  • Nickel-Rich Layered Microspheres Cathodes: Lithium/Nickel Disordering and Electrochemical Performance
  • 2014
  • Ingår i: ACS Applied Materials & Interfaces. - 1944-8252 .- 1944-8244. ; 6:18, s. 15822-15831
  • Tidskriftsartikel (refereegranskat)abstract
    • Nickel-rich layered metal oxide materials are prospective cathode materials for lithium ion batteries due to the relatively higher capacity and lower cost than LiCoO2. Nevertheless, the disordered arrangement of Li+/Ni2+ in local regions of these materials and its impact on electrochemistry performance are not well understood, especially for LiNi1–x–yCoxMnyO2 (1–x–y > 0.5) cathodes, which challenge one’s ability in finding more superior cathode materials for advanced lithium-ion batteries. In this work, Ni–Co–Mn-based spherical precursors were first obtained by a solvothermal method through handily utilizing the redox reaction of nitrate and ethanol. Subsequent sintering of the precursors with given amount of lithium source (Li-excess of 5, 10, and 15 mol %) yields LiNi0.7Co0.15Mn0.15O2 microspheres with different extents of Li+/Ni2+ disordering. With the determination of the amounts of Li+ ions in transition metal layer and Ni2+ ions in Li layer using structural refinement, the impact of Li+/Ni2+ ions disordering on the crystal structure, valence state of nickel ions, and electrochemical performance were investigated in detailed. It is clearly demonstrated that with increasing the amount of lithium source, lattice parameters (a and c) and interslab space thickness of unit cell decrease, and more Li+ ions incorporated into the 3a site of transition metal layer which leads to an increase of Ni3+ content in LiNi0.7Co0.15Mn0.15O2 as confirmed by X-ray photoelectron spectroscopy and a redox titration. Moreover, the electrochemical performance for as-prepared LiNi0.7Co0.15Mn0.15O2 microspheres exhibited a trend of deterioration due to the changes of crystal structure from Li+/Ni2+ mixing. The preparation method and the impacts of Li+/Ni2+ ions disordering reported herein for the nickel-rich layered LiNi0.7Co0.15Mn0.15O2 microspheres may provide hints for obtaining a broad class of nickel-rich layered metal oxide microspheres with superior electrochemical performance.
  •  
4.
  • Jiao, Xiang, et al. (författare)
  • PHIP - a novel candidate breast cancer susceptibility locus on 6q14.1
  • 2017
  • Ingår i: Oncotarget. - : IMPACT JOURNALS LLC. - 1949-2553. ; 8:61, s. 102769-102782
  • Tidskriftsartikel (refereegranskat)abstract
    • Most non-BRCA1/2 breast cancer families have no identified genetic cause. We used linkage and haplotype analyses in familial and sporadic breast cancer cases to identify a susceptibility locus on chromosome 6q. Two independent genome-wide linkage analysis studies suggested a 3 Mb locus on chromosome 6q and two unrelated Swedish families with a LOD > 2 together seemed to share a haplotype in 6q14.1. We hypothesized that this region harbored a rare high-risk founder allele contributing to breast cancer in these two families. Sequencing of DNA and RNA from the two families did not detect any pathogenic mutations. Finally, 29 SNPs in the region were analyzed in 44,214 cases and 43,532 controls from BCAC, and the original haplotypes in the two families were suggested as low-risk alleles for European and Swedish women specifically. There was also some support for one additional independent moderate-risk allele in Swedish familial samples. The results were consistent with our previous findings in familial breast cancer and supported a breast cancer susceptibility locus at 6q14.1 around the PHIP gene.
  •  
5.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
6.
  • Li, Qi, 1990, et al. (författare)
  • A Study on Storage Characteristics of Pristine Li-rich Layered Oxide Li1.20Mn0.54Co0.13Ni0.13O2: Effect of Storage Temperature and Duration
  • 2015
  • Ingår i: Electrochimica Acta. - 0013-4686. ; 154, s. 249-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-ion batteries always suffer from serious capability decay, especially when stored at high temperature and/or for prolonged duration. In this work, electrochemical performance for Li-rich layered oxides Li1.20Mn0.54Co0.13Ni0.13O2 was systematically investigated as a function of temperature and duration. Plenty of techniques like SEM, EDS, EIS, ARC, Raman, XRD, and XPS were utilized to characterize the structures, valence states, compositions, particle sizes, and morphologies of the layered oxides with varying temperature and duration. The results reveal that room temperature storage may alter surface kinetics, but hardly influence the electrochemical performance. While in the case of high temperature storage in pristine state, cycling stability is highly dependent on the storage duration. The degradation mechanism at high temperature storage with prolonged duration is demonstrated to be the accumulation of surface species like LiF/LixPFyOz initiated by the strong reactions between LiPF6 electrolyte and electrode. The results reported here may shed light on predicting electrochemical performance by surface analysis and also provide vital hints on enhancing the high-temperature storage stability of Li-rich layered oxides.
  •  
7.
  • Li, Qi, 1990, et al. (författare)
  • Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide
  • 2015
  • Ingår i: Journal of Materials Chemistry. - 1364-5501 .- 0959-9428. ; 3:19, s. 10592-10602
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium batteries for UPS, portable electronics and electrical vehicles rely on high-energy cathodes. Li-rich manganese-rich oxide (xLi2MnO3·(1 − x)LiMO2, M = transition metals) is one of the few materials that might meet such a requirement, but it suffers from poor energy retention due to serious voltage and/or capacity fade, which challenges its applications. Here we show that this challenge can be addressed by optimizing the interactions between the components Li2MnO3 and LiMO2 in the Li-rich oxide (i.e. stabilizing the layered structure through Li2MnO3 and controlling Li2MnO3 activation through LiMO2). To realize this synergistic effect, a novel Li2MnO3-stabilized Li1.080Mn0.503Ni0.387Co0.030O2 was designed and prepared using a hierarchical carbonate precursor obtained by a solvo/hydro-thermal method. This layered oxide is demonstrated to have a high working voltage of 3.9 V and large specific energy of 805 W h kg−1 at 29 °C as well as impressive energy retention of 92% over 100 cycles. Even when exposed to 55 °C, energy retention is still as high as 85% at 200 mA g−1. The attractive performance is most likely the consequence of the balanced stability and specific energy in the present material, which is promisingly applicable to other Li-rich oxide systems. This work sheds light on harnessing Li2MnO3 activation and furthermore efficient battery design simply through compositional tuning and temperature regulation.
  •  
8.
  • Li, Qi, 1990, et al. (författare)
  • K+-Doped Li1.2Mn0.54Co0.13Ni0.13O2: A Novel Cathode Material with an Enhanced Cycling Stability for Lithium-Ion Batteries
  • 2014
  • Ingår i: ACS Applied Materials & Interfaces. - 1944-8252 .- 1944-8244. ; 6:13, s. 10330-10341
  • Tidskriftsartikel (refereegranskat)abstract
    • Li-rich layered oxides have attracted much attention for their potential application as cathode materials in lithium ion batteries, but still suffer from inferior cycling stability and fast voltage decay during cycling. How to eliminate the detrimental spinel growth is highly challenging in this regard. Herein, in situ K+-doped Li1.20Mn0.54Co0.13Ni0.13O2 was successfully prepared using a potassium containing α-MnO2 as the starting material. A systematic investigation demonstrates for the first time, that the in situ potassium doping stabilizes the host layered structure by prohibiting the formation of spinel structure during cycling. This is likely due to the fact that potassium ions in the lithium layer could weaken the formation of trivacancies in lithium layer and Mn migration to form spinel structure, and that the large ionic radius of potassium could possibly aggravate steric hindrance for spinel growth. Consequently, the obtained oxides exhibited a superior cycling stability with 85% of initial capacity (315 mA h g–1) even after 110 cycles. The results reported in this work are fundamentally important, which could provide a vital hint for inhibiting the undesired layered-spinel intergrowth with alkali ion doping and might be extended to other classes of layered oxides for excellent cycling performance.
  •  
9.
  • Luo, Dong, et al. (författare)
  • A New Spinel-Layered Li-Rich Microsphere as a High-Rate Cathode Material for Li-Ion Batteries
  • 2014
  • Ingår i: Advanced Energy Materials. - 1614-6840 .- 1614-6832. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Li-rich layered materials are considered to be the promising low-cost cathodes for lithium-ion batteries but they suffer from poor rate capability despite of efforts toward surface coating or foreign dopings. Here, spinel-layered Li-rich Li-Mn-Co-O microspheres are reported as a new high-rate cathode material for Li-ion batteries. The synthetic procedure is relatively simple, involving the formation of uniform carbonate precursor under solvothermal conditions and its subsequent transformation to an assembled microsphere that integrates a spinel-like component with a layered component by a heat treatment. When calcined at 700 °C, the amount of transition metal Mn and Co in the Li-Mn-Co-O microspheres maintained is similar to at 800 °C, while the structures of constituent particles partially transform from 2D to 3D channels. As a consequence, when tested as a cathode for lithium-ion batteries, the spinel-layered Li-rich Li-Mn-Co-O microspheres obtained at 700 °C show a maximum discharge capacity of 185.1 mA h g−1 at a very high current density of 1200 mA g−1 between 2.0 and 4.6 V. Such a capacity is among the highest reported to date at high charge-discharge rates. Therefore, the present spinel-layered Li-rich Li-Mn-Co-O microspheres represent an attractive alternative to high-rate electrode materials for lithium-ion batteries.
  •  
10.
  • Luo, Dong, et al. (författare)
  • LiMO2 (M = Mn, Co, Ni) hexagonal sheets with (101) facets for ultrafast charging–discharging lithium ion batteries
  • 2015
  • Ingår i: Journal of Power Sources. - 0378-7753. ; 276, s. 238-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing energy storage equipments that can work at very high charge–discharge rate is crucial, but highly challenging for more efficient use of energy. From the perspective of chemistry, high-rate property of Li-ion batteries can only be achieved by significantly improving the kinetics of lithium ions and electrons in electrode. Here, we for the first time report on a simple method to resolve kinetics problems of ultrafast charging–discharging Li-ion batteries by fabrication of layered LiMO2 (M = Mn, Co, Ni) hexagonal sheet exposing with facets {101}. The synthetic procedure of hexagonal sheets is proceeded via a simple PVP-assisted co-precipitation, which is followed by a heat treatment. All hexagonal sheets LiMnxCoyNizO2 were demonstrated to deliver a superior excellent rate capability and outstanding cycle stability at high current density of 3000 mA g−1 and under a high cutoff voltage of 4.4 V. The discharge capacity for the composition LiMn0.075Co0.775Ni0.15O2 at an ultrahigh charge–discharge rate of 10,000 mA g−1 is almost as large as that for LiMn2O4 and commercial LiFePO4 at low rate of 1C. The methodology reported here to resolve the kinetic problems of lithium ions and electrons in electrodes may have many implications that would help scientists to find more high-rate lithium-ion batteries for powering electric vehicles and other applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (12)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Diaz, Sandra (1)
Nevanlinna, Heli (1)
Blomqvist, Carl (1)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Ostonen, Ivika (1)
visa fler...
Tedersoo, Leho (1)
Nilsson, Henrik (1)
Chang-Claude, Jenny (1)
Bond-Lamberty, Ben (1)
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Wang, Xin (1)
Liu, Fang (1)
Yang, Yifan (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Xu, Xin (1)
Kahan, Thomas (1)
Moretti, Marco (1)
Wang, Feng (1)
Wang, Qin (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Chen, Deliang, 1961 (1)
Sörelius, Karl, 1981 ... (1)
Adamovic, Tatjana (1)
Haiman, Christopher ... (1)
Batra, Jyotsna (1)
Giles, Graham G (1)
Brenner, Hermann (1)
Neuhausen, Susan L (1)
Roobol, Monique J (1)
Backman, Lars (1)
Eriksson, Mikael (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Arndt, Volker (1)
Wang, Jun (1)
Pollesello, Piero (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (8)
Göteborgs universitet (3)
Stockholms universitet (3)
Karolinska Institutet (3)
Uppsala universitet (2)
Umeå universitet (1)
visa fler...
Högskolan i Halmstad (1)
Lunds universitet (1)
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Teknik (8)
Naturvetenskap (6)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy