SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lupien Mathieu) "

Sökning: WFRF:(Lupien Mathieu)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bahr, Carsten, et al. (författare)
  • A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies
  • 2018
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 553:7689, s. 515-520
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor Myc is essential for the regulation of haematopoietic stem cells and progenitors and has a critical function in haematopoietic malignancies1. Here we show that an evolutionarily conserved region located 1.7 megabases downstream of the Myc gene that has previously been labelled as a ‘super-enhancer’2 is essential for the regulation of Myc expression levels in both normal haematopoietic and leukaemic stem cell hierarchies in mice and humans. Deletion of this region in mice leads to a complete loss of Myc expression in haematopoietic stem cells and progenitors. This caused an accumulation of differentiation-arrested multipotent progenitors and loss of myeloid and B cells, mimicking the phenotype caused by Mx1-Cre-mediated conditional deletion of the Myc gene in haematopoietic stem cells3. This super-enhancer comprises multiple enhancer modules with selective activity that recruits a compendium of transcription factors, including GFI1b, RUNX1 and MYB. Analysis of mice carrying deletions of individual enhancer modules suggests that specific Myc expression levels throughout most of the haematopoietic hierarchy are controlled by the combinatorial and additive activity of individual enhancer modules, which collectively function as a ‘blood enhancer cluster’ (BENC). We show that BENC is also essential for the maintenance of MLL–AF9-driven leukaemia in mice. Furthermore, a BENC module, which controls Myc expression in mouse haematopoietic stem cells and progenitors, shows increased chromatin accessibility in human acute myeloid leukaemia stem cells compared to blasts. This difference correlates with MYC expression and patient outcome. We propose that clusters of enhancers, such as BENC, form highly combinatorial systems that allow precise control of gene expression across normal cellular hierarchies and which also can be hijacked in malignancies.
  •  
2.
  • Llinàs-Arias, Pere, et al. (författare)
  • 3-D chromatin conformation, accessibility, and gene expression profiling of triple-negative breast cancer
  • 2023
  • Ingår i: BMC Genomic Data. - : Springer Nature. - 2730-6844. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with limited treatment options. Unlike other breast cancer subtypes, the scarcity of specific therapies and greater frequencies of distant metastases contribute to its aggressiveness. We aimed to find epigenetic changes that aid in the understanding of the dissemination process of these cancers. Data description: Using CRISPR/Cas9, our experimental approach led us to identify and disrupt an insulator element, IE8, whose activity seemed relevant for cell invasion. The experiments were performed in two well-established TNBC cellular models, the MDA-MB-231 and the MDA-MB-436. To gain insights into the underlying molecular mechanisms of TNBC invasion ability, we generated and characterized high-resolution chromatin interaction (Hi-C) and chromatin accessibility (ATAC-seq) maps in both cell models and complemented these datasets with gene expression profiling (RNA-seq) in MDA-MB-231, the cell line that showed more significant changes in chromatin accessibility. Altogether, our data provide a comprehensive resource for understanding the spatial organization of the genome in TNBC cells, which may contribute to accelerating the discovery of TNBC-specific alterations triggering advances for this devastating disease.
  •  
3.
  • Mer, Arvind Singh, et al. (författare)
  • Biological and therapeutic implications of a unique subtype of NPM1 mutated AML
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In acute myeloid leukemia (AML), molecular heterogeneity across patients constitutes a major challenge for prognosis and therapy. AML with NPM1 mutation is a distinct genetic entity in the revised World Health Organization classification. However, differing patterns of co-mutation and response to therapy within this group necessitate further stratification. Here we report two distinct subtypes within NPM1 mutated AML patients, which we label as primitive and committed based on the respective presence or absence of a stem cell signature. Using gene expression (RNA-seq), epigenomic (ATAC-seq) and immunophenotyping (CyToF) analysis, we associate each subtype with specific molecular characteristics, disease differentiation state and patient survival. Using ex vivo drug sensitivity profiling, we show a differential drug response of the subtypes to specific kinase inhibitors, irrespective of the FLT3-ITD status. Differential drug responses of the primitive and committed subtype are validated in an independent AML cohort. Our results highlight heterogeneity among NPM1 mutated AML patient samples based on stemness and suggest that the addition of kinase inhibitors to the treatment of cases with the primitive signature, lacking FLT3-ITD, could have therapeutic benefit. Molecular heterogeneity of acute myeloid leukaemia (AML) across patients is a major challenge for prognosis and therapy. Here, the authors show that NPM1 mutated AML is a heterogeneous class, consisting of two subtypes which exhibit distinct molecular characteristics, differentiation state, patient survival and drug response.
  •  
4.
  • Setlur, Sunita R., et al. (författare)
  • Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer
  • 2008
  • Ingår i: Journal of the National Cancer Institute. - Oxford : Oxford University Press. - 0027-8874 .- 1460-2105. ; 100:11, s. 815-825
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The majority of prostate cancers harbor gene fusions of the 5'-untranslated region of the androgen-regulated transmembrane protease serine 2 (TMPRSS2) promoter with erythroblast transformation-specific transcription factor family members. The common fusion between TMPRESS2 and v-ets erythroblastosis virus E26 oncogene homolog (avian) (ERG) is associated with a more aggressive clinical phenotype, implying the existence of a distinct subclass of prostate cancer defined by this fusion. METHODS: We used complementary DNA-mediated annealing, selection, ligation, and extension to determine the expression profiles of 6144 transcriptionally informative genes in archived biopsy samples from 455 prostate cancer patients in the Swedish Watchful Waiting cohort (1987-1999) and the United States-based Physicians(') Health Study cohort (1983-2003). A gene expression signature for prostate cancers with the TMPRSS2-ERG fusion was determined using partitioning and classification models and used in computational functional analysis. Cell proliferation and TMPRSS2-ERG expression in androgen receptor-negative (NCI-H660) prostate cancer cells after treatment with vehicle or estrogenic compounds were assessed by viability assays and quantitative polymerase chain reaction, respectively. All statistical tests were two-sided. RESULTS: We identified an 87-gene expression signature that distinguishes TMPRSS2-ERG fusion prostate cancer as a discrete molecular entity (area under the curve = 0.80, 95% confidence interval [CI] = 0.792 to 0.81; P < .001). Computational analysis suggested that this fusion signature was associated with estrogen receptor (ER) signaling. Viability of NCI-H660 cells decreased after treatment with estrogen (viability normalized to day 0, estrogen vs vehicle at day 8, mean = 2.04 vs 3.40, difference = 1.36, 95% CI = 1.12 to 1.62) or ERbeta agonist (ERbeta agonist vs vehicle at day 8, mean = 1.86 vs 3.40, difference = 1.54, 95% CI = 1.39 to 1.69) but increased after ERalpha agonist treatment (ERalpha agonist vs vehicle at day 8, mean = 4.36 vs 3.40, difference = 0.96, 95% CI = 0.68 to 1.23). Similarly, expression of TMPRSS2-ERG decreased after ERbeta agonist treatment (fold change over internal control, ERbeta agonist vs vehicle at 24 hours, NCI-H660, mean = 0.57- vs 1.0-fold, difference = 0.43-fold, 95% CI = 0.29- to 0.57-fold) and increased after ERalpha agonist treatment (ERalpha agonist vs vehicle at 24 hours, mean = 5.63- vs 1.0-fold, difference = 4.63-fold, 95% CI = 4.34- to 4.92-fold). CONCLUSIONS: TMPRSS2-ERG fusion prostate cancer is a distinct molecular subclass. TMPRSS2-ERG expression is regulated by a novel ER-dependent mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy