SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lustig Ulrika) "

Sökning: WFRF:(Lustig Ulrika)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Atterby, Clara, et al. (författare)
  • Selection of Resistant Bacteria in Mallards Exposed to Subinhibitory Concentrations of Ciprofloxacin in Their Water Environment
  • 2021
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 65:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Emergence and selection of antibiotic resistance following exposure to high antibiotic concentrations have been repeatedly shown in clinical and agricultural settings, whereas the role of the weak selective pressures exerted by antibiotic levels below the MIC (sub-MIC) in aquatic environments due to anthropogenic contamination remains unclear. Here, we studied how exposure to sub-MIC levels of ciprofloxacin enriches for Escherichia coli with reduced susceptibility to ciprofloxacin using a mallard colonization model. Mallards were inoculated with two isogenic extended-spectrum-beta-lactamase (ESBL)-encoding E. coli strains, differing only by a gyrA mutation that results in increased MICs of ciprofloxacin, and exposed to different levels of ciprofloxacin in their swimming water. Changes in the ratios of mutant to parental strains excreted in feces over time and ESBL plasmid spread within the gut microbiota from individual birds were investigated. Results show that in vivo selection of gyrA mutants occurred in mallards during exposure to ciprofloxacin at concentrations previously found in aquatic environments. During colonization, resistance plasmids were readily transferred between strains in the intestines of the mallards, but conjugation frequencies were not affected by ciprofloxacin exposure. Our results highlight the potential for enrichment of resistant bacteria in wildlife and underline the importance of reducing antibiotic pollution in the environment.
  •  
2.
  •  
3.
  • Khan, David D., et al. (författare)
  • A mechanism-based pharmacokinetic/pharmacodynamic model allows prediction of antibiotic killing from MIC values for WT and mutants
  • 2015
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 70:11, s. 3051-3060
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: In silico pharmacokinetic/pharmacodynamic (PK/PD) models can be developed based on data from in vitro time-kill experiments and can provide valuable information to guide dosing of antibiotics. The aim was to develop a mechanism-based in silico model that can describe in vitro time-kill experiments of Escherichia coli MG1655 WT and six isogenic mutants exposed to ciprofloxacin and to identify relationships that may be used to simplify future characterizations in a similar setting. Methods: In this study, we developed a mechanism-based PK/PD model describing killing kinetics for E. coli following exposure to ciprofloxacin. WT and six well-characterized mutants, with one to four clinically relevant resistance mutations each, were exposed to a wide range of static ciprofloxacin concentrations. Results: The developed model includes susceptible growing bacteria, less susceptible (pre-existing resistant) growing bacteria, non-susceptible non-growing bacteria and non-colony-forming non-growing bacteria. The non-colony-forming state was likely due to formation of filaments and was needed to describe data close to the MIC. A common model structure with different potency for bacterial killing (EC50) for each strain successfully characterized the time-kill curves for both WT and the six E. coli mutants. Conclusions: The model-derived mutant-specific EC50 estimates were highly correlated (r(2) = 0.99) with the experimentally determined MICs, implying that the in vitro time-kill profile of a mutant strain is reasonably well predictable by the MIC alone based on the model.
  •  
4.
  •  
5.
  • Knöppel, Anna, et al. (författare)
  • Genetic adaptation to growth under laboratory conditions in Escherichia coli and Salmonella enterica
  • 2018
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental evolution under controlled laboratory conditions is becoming increasingly important to address various evolutionary questions, including, for example, the dynamics and mechanisms of genetic adaptation to different growth and stress conditions. In such experiments, mutations typically appear that increase the fitness under the conditions tested (medium adaptation), but that are not necessarily of interest for the specific research question. Here, we have identified mutations that appeared during serial passage of E. coli and S. enterica in four different and commonly used laboratory media and measured the relative competitive fitness and maximum growth rate of 111 genetically re-constituted strains, carrying different single and multiple mutations. Little overlap was found between the mutations that were selected in the two species and the different media, implying that adaptation occurs via different genetic pathways. Furthermore, we show that commonly occurring adaptive mutations can generate undesired genetic variation in a population and reduce the accuracy of competition experiments. However, by introducing media adaptation mutations with large effects into the parental strain that was used for the evolution experiment, the variation (standard deviation) was decreased 10-fold, and it was possible to measure fitness differences between two competitors as small as |s| < 0.001.
  •  
6.
  •  
7.
  • Knöppel, Anna, et al. (författare)
  • Minor Fitness Costs in an Experimental Model of Horizontal Gene Transfer in Bacteria
  • 2014
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 31:5, s. 1220-1227
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes introduced by horizontal gene transfer (HGT) from other species constitute a significant portion of many bacterial genomes, and the evolutionary dynamics of HGTs are important for understanding the spread of antibiotic resistance and the emergence of new pathogenic strains of bacteria. The fitness effects of the transferred genes largely determine the fixation rates and the amount of neutral diversity of newly acquired genes in bacterial populations. Comparative analysis of bacterial genomes provides insight into what genes are commonly transferred, but direct experimental tests of the fitness constraints on HGT are scarce. Here, we address this paucity of experimental studies by introducing 98 random DNA fragments varying in size from 0.45 to 5 kb from Bacteroides, Proteus, and human intestinal phage into a defined position in the Salmonella chromosome and measuring the effects on fitness. Using highly sensitive competition assays, we found that eight inserts were deleterious with selection coefficients (s) ranging from a parts per thousand -0.007 to -0.02 and 90 did not have significant fitness effects. When inducing transcription from a P-BAD promoter located at one end of the insert, 16 transfers were deleterious and 82 were not significantly different from the control. In conclusion, a major fraction of the inserts had minor effects on fitness implying that extra DNA transferred by HGT, even though it does not confer an immediate selective advantage, could be maintained at selection-transfer balance and serve as raw material for the evolution of novel beneficial functions.
  •  
8.
  •  
9.
  •  
10.
  • Nielsen, Elisabet I., 1973-, et al. (författare)
  • Can a pharmacokinetic/pharmacodynamic (PKPD) model be predictive across bacterial densities and strains? : External evaluation of a PKPD model describing longitudinal in vitro data
  • 2017
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : OXFORD UNIV PRESS. - 0305-7453 .- 1460-2091. ; 72:11, s. 3108-3116
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Pharmacokinetic/pharmacodynamic (PKPD) models developed based on data from in vitro time-kill experiments have been suggested to contribute to more efficient drug development programmes and better dosing strategies for antibiotics. However, for satisfactory predictions such models would have to show good extrapolation properties. Objectives: To evaluate if a previously described mechanism-based PKPD model was able also to predict drug efficacy for higher bacterial densities and across bacterial strains. Methods: A PKPD model describing the efficacy of ciprofloxacin on Escherichia coli was evaluated. The predictive performance of the model was evaluated across several experimental conditions with respect to: (i) bacterial start inoculum ranging from the standard of similar to 10(6) cfu/mL up to late stationary-phase cultures; and (ii) efficacy for seven additional strains (three laboratory and four clinical strains), not included during the model development process, based only on information regarding their MIC. Model predictions were performed according to the intended experimental protocol and later compared with observed bacterial counts. Results: The mechanism-based PKPD model structure developed based on data from standard start inoculum experiments was able to accurately describe the inoculum effect. The model successfully predicted the time course of drug efficacy for additional laboratory and clinical strains based on only the MIC values. The model structure was further developed to better describe the stationary phase data. Conclusions: This study supports the use of mechanism-based PKPD models based on preclinical data for predictions of untested scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy