SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lutz Martina 1989) "

Sökning: WFRF:(Lutz Martina 1989)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Konarska, Janina, 1986, et al. (författare)
  • Transpiration of urban trees and its cooling effect in a high latitude city
  • 2016
  • Ingår i: International journal of biometeorology. - : Springer Science and Business Media LLC. - 0020-7128 .- 1432-1254. ; 60:1, s. 159-172
  • Tidskriftsartikel (refereegranskat)abstract
    • An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m−2 s−1 (B. pendula) to over 3 mmol m−2 s−1 (Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68 % of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20 % of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m−2, tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m−2, a cooling effect of tree transpiration was not observed during the day.
  •  
2.
  • Konarska, Janina, 1986, et al. (författare)
  • Transpiration of urban trees and its impact on nocturnal cooling in Gothenburg, Sweden
  • 2015
  • Ingår i: ICUC9 – 9 th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment. 20-24 July 2015, Toulouse, France.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • One of the ecosystem services provided by urban trees is the cooling effect caused by their transpiration. However, while the transpiration of forest trees has been widely studied, little research has been conducted on the daytime and night-time transpirational cooling effect of mature urban trees. Knowledge about the transpiration of street and park trees and its response to different environmental factors can prove useful in estimating the thermal influence of urban greenery as well as in urban planning and management. The aim of this study is to i) quantify the magnitude and diurnal variation of transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), ii) analyse the influence of weather conditions and fraction of permeable surfaces within the vertically projected crown area on tree transpiration, and iii) find out whether transpiration of urban trees remains active during the night and therefore contributes to nocturnal cooling. Measurements were conducted on mature street and park trees of seven tree species common in Gothenburg: Tilia europaea (Common lime), Quercus robur (English oak), Betula pendula (Silver birch), Acer platanoides (Norway maple), Aesculus hippocastanum (Horse chestnut), Fagus sylvatica (European beech) and Prunus serrulata (Japanese cherry). Stomatal conductance and leaf transpiration were measured using a LI-6400XT Portable Photosynthesis System (LI-COR Biosciences) at daytime and night-time on warm summer days of 2012-2013 in Gothenburg. Leaf area index (LAI) of the studied trees was measured with a LAI-2200 Plant Canopy Analyser (LI-COR Biosciences) in order to estimate the latent heat flux due to tree transpiration. Leaf transpiration was found to increase with vapour pressure deficit and photosynthetically active radiation, with on average 22% of the midday incoming solar radiation being converted into latent heat flux. Midday rates of sunlit leaves varied between species, ranging from less than 1 mmol m-2 s-1 (B. pendula) to over 3 mmol m-2 s-1 (Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected tree crown area. A simple estimate of available rainwater, comprising of precipitation sum and a fractional surface permeability within the tree crown area, was found to explain 68% of variation in midday stomatal conductance. The results indicate that a high fractional surface permeability can minimize the frequency of water stress experienced by urban trees and enhance their transpirational cooling. Night-time transpiration was observed in all studied species and was positively related to daytime tree water use. Nocturnal transpiration amounted to 7% and 20% of midday transpiration of sunlit and shaded leaves, respectively. With an estimated latent heat flux of 27 W m-2, evening tree transpiration enhanced the cooling rates around and 1-2 hours after sunset, but not later in the night. The results of transpiration measurements will be combined with vegetation data derived from LIDAR and LAI measurements to estimate neighbourhood- to city-scale cooling effect provided by urban trees.
  •  
3.
  • Tarvainen, Lasse, 1977, et al. (författare)
  • Increased needle nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-poor Scots pine trees
  • 2016
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 7:1051
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modelling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar P deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute towards lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the question if N limitation in boreal forests acts primarily by constraining growth of young stands while the commonly recorded increase in stem growth of mature stands following N addition is primarily the result of altered allocation and only to a limited extent the result of increased stand C-capture.
  •  
4.
  • Tarvainen, Lasse, 1977, et al. (författare)
  • Temperature responses of photosynthetic capacity parameters were not affected by foliar nitrogen content in mature Pinus sylvestris
  • 2018
  • Ingår i: Physiologia Plantarum : An International Journal for Plant Biology. - : Wiley. - 0031-9317 .- 1399-3054. ; 162:3, s. 370-378
  • Tidskriftsartikel (refereegranskat)abstract
    • A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (Vcmax) and electron transport (Jmax), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that Vcmax and Jmax exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study we investigated the temperature dependencies of Vcmax and Jmax in one-year-old needles of mature boreal Pinus sylvestris L. (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of Vcmax or Jmax when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modelling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy