SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lybekk B) "

Sökning: WFRF:(Lybekk B)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gustafsson, Georg, et al. (författare)
  • First results of electric field and density observations by Cluster EFW based on initial months of operation
  • 2001
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 19:12-okt, s. 1219-1240
  • Tidskriftsartikel (refereegranskat)abstract
    • Highlights are presented from studies of the electric field data from various regions along the CLUSTER orbit. They all point towards a very high coherence for phenomena recorded on four spacecraft that are separated by a few hundred kilometers for structures over the whole range of apparent frequencies from I mHz to 9 kHz. This presents completely new opportunities to study spatial-temporal plasma phenomena from the magnetosphere out to the solar wind. A new probe environment was constructed for the CLUSTER electric field experiment that now produces data of unprecedented quality. Determination of plasma flow in the solar wind is an example of the capability of the instrument.
  •  
3.
  •  
4.
  • Gustafsson, G, et al. (författare)
  • The electric field and wave experiment for the Cluster mission
  • 1997
  • Ingår i: Space Science Reviews. - 0038-6308 .- 1572-9672. ; 79, s. 137-156
  • Tidskriftsartikel (refereegranskat)abstract
    • The electric-field and wave experiment (EFW) on Cluster is designed to measure the electric-field and density fluctuations with sampling rates up to 36 000 samples s(-1). Langmuir probe sweeps can also be made to determine the electron density and temperature. The instrument has several important capabilities. These include (1) measurements of quasi-static electric fields of amplitudes lip to 700 mV m(-1) with high amplitude and time resolution, (2) measurements over short periods of time of up to five simualtaneous waveforms (two electric signals and three magnetic signals from the seach coil magnetometer sensors) of a bandwidth of 4 kHz with high time resolution, (3) measurements of density fluctuations in four points with high time resolution. Among the more interesting scientific objectives of the experiment are studies of nonlinear wave phenomena that result in acceleration of plasma as well as large- and small-scale interferometric measurements. By using four spacecraft for large-scale differential measurements and several Langmuir probes on one spacecraft for small-scale interferometry, it will be possible to study motion and shape of plasma structures on a wide range of spatial and temporal scales. This paper describes the primary scientific objectives of the EFW experiment and the technical capabilities of the instrument.
  •  
5.
  • Pecseli, HL, et al. (författare)
  • Lower hybrid wave cavities detected by the FREJA satellite
  • 1996
  • Ingår i: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS. - : AMER GEOPHYSICAL UNION. ; 101:A3, s. 5299-5316
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Localized electrostatic wave packets in the frequency region of lower hybrid waves have been detected by the instruments on the FREJA satellite. These waves are often associated with local density depletions indicating that the structures can be interpret
  •  
6.
  • Carr, C., et al. (författare)
  • RPC : The rosetta plasma consortium
  • 2007
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 128:1-4, s. 629-647
  • Forskningsöversikt (refereegranskat)abstract
    • The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma enviromnent of comet 67P/Churyumov-Gerasimenko. The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit (PIU). The consortium approach allows for scientific, technical and operational coordination, and makes Optimum use of the available mass and power resources.
  •  
7.
  • Eriksson, Anders, et al. (författare)
  • RPC-LAP : The Rosetta Langmuir probe instrument
  • 2007
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 128:04-jan, s. 729-744
  • Forskningsöversikt (refereegranskat)abstract
    • The Rosetta dual Langmuir probe instrument, LAP, utilizes the multiple powers of a pair of spherical Langmuir probes for measurements of basic plasma parameters with the aim of providing detailed knowledge of the outgassing, ionization, and subsequent plasma processes around the Rosetta target comet. The fundamental plasma properties to be studied are the plasma density, the electron temperature, and the plasma flow velocity. However, study of electric fields up to 8 kHz, plasma density fluctuations, spacecraft potential, integrated UV flux, and dust impacts is also possible. LAP is fully integrated in the Rosetta Plasma Consortium (RPC), the instruments of which together provide a comprehensive characterization of the cometary plasma.
  •  
8.
  • Haaland, S., et al. (författare)
  • Estimating the capture and loss of cold plasma from ionospheric outflow
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A07311-
  • Tidskriftsartikel (refereegranskat)abstract
    • An important source of magnetospheric plasma is cold plasma from the terrestrial ionosphere. Low energy ions travel along the magnetic field lines and enter the magnetospheric lobes where they are convected toward the tail plasma sheet. Recent observations indicate that the field aligned ion outflow velocity is sometimes much higher than the convection toward the central plasma sheet. A substantial amount of plasma therefore escapes downtail without ever reaching the central plasma sheet. In this work, we use Cluster measurements of cold plasma outflow and lobe convection velocities combined with models of the magnetic field in an attempt to determine the fate of the outflowing ions and to quantify the amount of plasma lost downtail. The results show that both the circulation of plasma and the direct tailward escape of ions varies significantly with magnetospheric conditions. For strong solar wind driving with a southward interplanetary magnetic field, also typically associated with high geomagnetic activity, most of the outflowing plasma is convected to the plasma sheet and recirculated. For periods with northward interplanetary magnetic field, the convection is nearly stagnant, whereas the outflow, although limited, still persists. The dominant part of the outflowing ions escape downtail and are directly lost into the solar wind under such conditions.
  •  
9.
  • Haaland, S., et al. (författare)
  • Estimation of cold plasma outflow during geomagnetic storms
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:12, s. 10622-10639
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.
  •  
10.
  • Hoymork, SH, et al. (författare)
  • Cavitation of lower hybrid waves in the Earth's ionosphere: A model analysis
  • 2000
  • Ingår i: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS. - : AMER GEOPHYSICAL UNION. - 0148-0227. ; 105:A8, s. 18519-18535
  • Tidskriftsartikel (refereegranskat)abstract
    • Lower hybrid wave cavities detected by the Freja satellite are analyzed. On the basis of simple statistical arguments by use of signals from two density probes, it is possible to obtain rather general results concerning the individual shapes of these cavi
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy