SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mäe Maarja A.) "

Sökning: WFRF:(Mäe Maarja A.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De La Fuente, Alerie Guzman, et al. (författare)
  • Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 20:8, s. 1755-1764
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs) proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs) rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfb(ret/ret) mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC) differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.
  •  
2.
  • Lund, Harald, et al. (författare)
  • CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier
  • 2024
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 221:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163(+) macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
  •  
3.
  • Mäe, Maarja Andaloussi, et al. (författare)
  • Prolonged systemic hyperglycemia does not cause pericyte loss and permeability at the mouse blood-brain barrier
  • 2018
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1, s. 17462-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes mellitus is associated with cognitive impairment and various central nervous system pathologies such as stroke, vascular dementia, or Alzheimer’s disease. The exact pathophysiology of these conditions is poorly understood. Recent reports suggest that hyperglycemia causes cerebral microcirculation pathology and blood-brain barrier (BBB) dysfunction and leakage. The majority of these reports, however, are based on methods including in vitro BBB modeling or streptozotocin-induced diabetes in rodents, opening questions regarding the translation of the in vitro findings to the in vivo situation, and possible direct effects of streptozotocin on the brain vasculature. Here we used a genetic mouse model of hyperglycemia (Ins2AKITA) to address whether prolonged systemic hyperglycemia induces BBB dysfunction and leakage. We applied a variety of methodologies to carefully evaluate BBB function and cellular integrity in vivo, including the quantification and visualization of specific tracers and evaluation of transcriptional and morphological changes in the BBB and its supporting cellular components. These experiments did neither reveal altered BBB permeability nor morphological changes of the brain vasculature in hyperglycemic mice. We conclude that prolonged hyperglycemia does not lead to BBB dysfunction, and thus the cognitive impairment observed in diabetes may have other causes.
  •  
4.
  • Greene, Chris, et al. (författare)
  • Microvascular stabilization via blood-brain barrier regulation prevents seizure activity
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood-brain barrier (BBB) dysfunction is associated with worse epilepsy outcomes however the underlying molecular mechanisms of BBB dysfunction remain to be elucidated. Tight junction proteins are important regulators of BBB integrity and in particular, the tight junction protein claudin-5 is the most enriched in brain endothelial cells and regulates size-selectivity at the BBB. Additionally, disruption of claudin-5 expression has been implicated in numerous disorders including schizophrenia, depression and traumatic brain injury, yet its role in epilepsy has not been fully deciphered. Here we report that claudin-5 protein levels are significantly diminished in surgically resected brain tissue from patients with treatment-resistant epilepsy. Concomitantly, dynamic contrast-enhanced MRI in these patients showed widespread BBB disruption. We show that targeted disruption of claudin-5 in the hippocampus or genetic heterozygosity of claudin-5 in mice exacerbates kainic acid-induced seizures and BBB disruption. Additionally, inducible knockdown of claudin-5 in mice leads to spontaneous recurrent seizures, severe neuroinflammation, and mortality. Finally, we identify that RepSox, a regulator of claudin-5 expression, can prevent seizure activity in experimental epilepsy. Altogether, we propose that BBB stabilizing drugs could represent a new generation of agents to prevent seizure activity in epilepsy patients.
  •  
5.
  • Nahar, Khayrun, et al. (författare)
  • Astrocyte-microglial association and matrix composition are common events in the natural history of primary familial brain calcification
  • 2020
  • Ingår i: Brain Pathology. - : Wiley. - 1015-6305 .- 1750-3639. ; 30:3, s. 446-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary familial brain calcification (PFBC) is an age-dependent and rare neurodegenerative disorder characterized by microvascular calcium phosphate deposits in the deep brain regions. Known genetic causes of PFBC include loss-of-function mutations in genes involved in either of three processes-platelet-derived growth factor (PDGF) signaling, phosphate homeostasis or protein glycosylation-with unclear molecular links. To provide insight into the pathogenesis of PFBC, we analyzed murine models of PFBC for the first two of these processes in Pdgfb(ret/ret) and Slc20a2(-/-) mice with regard to the structure, molecular composition, development and distribution of perivascular calcified nodules. Analyses by transmission electron microscopy and immunofluorescence revealed that calcified nodules in both of these models have a multilayered ultrastructure and occur in direct contact with reactive astrocytes and microglia. However, whereas nodules in Pdgfb(ret/ret) mice were large, solitary and smooth surfaced, the nodules in Slc20a2(-/-) mice were multi-lobulated and occurred in clusters. The regional distribution of nodules also differed between the two models. Proteomic analysis and immunofluorescence stainings revealed a common molecular composition of the nodules in the two models, involving proteins implicated in bone homeostasis, but also proteins not previously linked to tissue mineralization. While the brain vasculature of Pdgfb(ret/ret) mice has been reported to display reduced pericyte coverage and abnormal permeability, we found that Slc20a2(-/-) mice have a normal pericyte coverage and no overtly increased permeability. Thus, lack of pericytes and increase in permeability of the blood-brain barrier are likely not the causal triggers for PFBC pathogenesis. Instead, gene expression and spatial correlations suggest that astrocytes are intimately linked to the calcification process in PFBC.
  •  
6.
  • Pietilä, Riikka, et al. (författare)
  • Molecular anatomy of adult mouse leptomeninges
  • 2023
  • Ingår i: Neuron. - : Elsevier. - 0896-6273 .- 1097-4199. ; 111:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we iden-tify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arach-noid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy