SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mårtensson Alexander) "

Sökning: WFRF:(Mårtensson Alexander)

  • Resultat 1-10 av 80
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Generaloy, Alexander V., et al. (författare)
  • Evolution of CuI/Graphene/Ni(111) System during Vacuum Annealing
  • 2015
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 119:22, s. 12434-12444
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a combined core-level spectroscopy and low-energy electron diffraction study of the evolution of thin CuI layers on graphene/Ni(111) during annealing. It has been found that the annealing of the CuI/graphene/Ni(111) system up to 160 degrees C results in the formation of an ordered CuI overlayer with a (root 3 x root 3) R30 degrees structure on top of the graphene surface. At annealing temperatures of about 180 degrees C or higher, the CuI overlayer decomposes with a simultaneous intercalation of Cu and I atoms underneath the graphene monolayer on Ni(111). Nearly complete intercalation of graphene by Cu and I atoms can be achieved by deposition of about 20 angstrom of CuI, followed by annealing at 200 degrees C. The intercalated graphene layer is p-doped due to interfacial iodine atoms.
  •  
3.
  • Jacobse, Peter H., et al. (författare)
  • One Precursor but Two Types of Graphene Nanoribbons : On-Surface Transformations of 10,10'-Dichloro-9,9'-bianthryl on Ag(111)
  • 2019
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:14, s. 8892-8901
  • Tidskriftsartikel (refereegranskat)abstract
    • On-surface synthesis has emerged in the last decade as a method to create graphene nanoribbons (GNRs) with atomic precision. The underlying premise of this bottom-up strategy is that precursor molecules undergo a well-defined sequence of inter- and intramolecular reactions, leading to the formation of a single product. As such, the structure of the GNR is encoded in the precursors. However, recent examples have shown that not only the molecule, but also the coinage metal surface on which the reaction takes place, plays a decisive role in dictating the nanoribbon structure. In this work, we use scanning probe microscopy and X-ray photoelectron spectroscopy to investigate the behavior of 10,10'-dichloro-9,9'-bianthryl (DCBA) on Ag(111). Our study shows that Ag(111) can induce the formation of both seven-atom wide armchair GNRs (7-acGNRs) and 3,1-chiral GNRs (3,1-cGNRs), demonstrating that a single molecule on a single surface can react to different nanoribbon products. We additionally show that coadsorbed dibromoperylene can promote surface-assisted dehydrogenative coupling in DCBA, leading to the exclusive formation of 3,1-cGNRs.
  •  
4.
  • Senkovskiy, Boris V., et al. (författare)
  • Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons
  • 2017
  • Ingår i: Advanced Electronic Materials. - : Wiley. - 2199-160X. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A semiconductor-to-metal transition in N = 7 armchair graphene nanoribbons causes drastic changes in its electron and phonon system. By using angle-resolved photoemission spectroscopy of lithium-doped graphene nanoribbons, a quasiparticle band gap renormalization from 2.4 to 2.1 eV is observed. Reaching high doping levels (0.05 electrons per atom), it is found that the effective mass of the conduction band carriers increases to a value equal to the free electron mass. This giant increase in the effective mass by doping is a means to enhance the density of states at the Fermi level which can have palpable impact on the transport and optical properties. Electron doping also reduces the Raman intensity by one order of magnitude, and results in relatively small (4 cm−1) hardening of the G phonon and softening of the D phonon. This suggests the importance of both lattice expansion and dynamic effects. The present work highlights that doping of a semiconducting 1D system is strikingly different from its 2D or 3D counterparts and introduces doped graphene nanoribbons as a new tunable quantum material with high potential for basic research and applications.
  •  
5.
  •  
6.
  • Simonov, Konstantin A., et al. (författare)
  • Effect of Electron Injection in Copper-Contacted Graphene Nanoribbons
  • 2016
  • Ingår i: Nano Reseach. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 9:9, s. 2735-2746
  • Tidskriftsartikel (refereegranskat)abstract
    • For practical electronic device applications of graphene nanoribbons (GNRs), it is essential to have abrupt and well-defined contacts between the ribbon and the adjacent metal lead. By analogy with graphene, these contacts can induce electron or hole doping, which may significantly affect the I/V characteristics of the device. Cu is among the most popular metals of choice for contact materials. In this study, we investigate the effect of in situ intercalation of Cu on the electronic structure of atomically precise, spatially aligned armchair GNRs of width N = 7 (7-AGNRs) fabricated via a bottom-up method on the Au(788) surface. Scanning tunneling microscopy data reveal that the complete intercalation of about one monolayer of Cu under 7-AGNRs can be facilitated by gentle annealing of the sample at 80 A degrees C. Angle-resolved photoemission spectroscopy (ARPES) data clearly reflect the one-dimensional character of the 7-AGNR band dispersion before and after intercalation. Moreover, ARPES and core-level photoemission results show that intercalation of Cu leads to significant electron injection into the nanoribbons, which causes a pronounced downshift of the valence and conduction bands of the GNR with respect to the Fermi energy (Delta E similar to 0.5 eV). As demonstrated by ARPES and X-ray absorption spectroscopy measurements, the effect of Cu intercalation is restricted to n-doping only, without considerable modification of the band structure of the GNRs. Post-annealing of the 7-AGNRs/Cu/Au(788) system at 200 A degrees C activates the diffusion of Cu into Au and the formation of a Cu-rich surface Au layer. Alloying of intercalated Cu leads to the recovery of the initial position of GNR-related bands with respect to the Fermi energy (E (F)), thus, proving the tunability of the induced n-doping.
  •  
7.
  • Simonov, Konstantin A., et al. (författare)
  • From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110) : Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy
  • 2015
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 9:9, s. 8997-9011
  • Tidskriftsartikel (refereegranskat)abstract
    • Bottom-up strategies can be effectively implemented for the fabrication of atomically precise graphene nanoribbons. Recently, using 10,10'-dibromo-9,9'-bianthracene (DBBA) as a molecular precursor to grow armchair nanoribbons on Au(111) and Cu(111), we have shown that substrate activity considerably affects the dynamics of ribbon formation, nonetheless without significant modifications in the growth mechanism. In this paper we compare the on-surface reaction pathways for DBBA molecules on Cu(111) and Cu(110). Evolution of both systems has been studied via a combination of core-level X-ray spectroscopies, scanning tunneling microscopy, and theoretical calculations. Experimental and theoretical results reveal a significant increase in reactivity for the open and anisotropic Cu(110) surface in comparison with the close-packed Cu(111). This increased reactivity results in a predominance of the molecular substrate interaction over the intermolecular one, which has a critical impact on the transformations of DBBA on Cu(110). Unlike DBBA on Cu(111), the Ullmann coupling cannot be realized for DBBA/Cu(110) and the growth of nanoribbons via this mechanism is blocked. Instead, annealing of DBBA on Cu(110) at 250 degrees C results in the formation of a new structure: quasi-zero-dimensional flat nanographenes. Each nanographene unit has dehydrogenated zigzag edges bonded to the underlying Cu rows and oriented with the hydrogen-terminated armchair edge parallel to the [1-10] direction. Strong bonding of nanographene to the substrate manifests itself in a high adsorption energy of -12.7 eV and significant charge transfer of 3.46e from the copper surface. Nanographene units coordinated with bromine adatoms are able to arrange in highly regular arrays potentially suitable for nanotemplating.
  •  
8.
  •  
9.
  • Simonov, Konstantin, 1988-, et al. (författare)
  • Effect of Substrate Chemistry on the Bottom-Up Fabrication of Graphene Nanoribbons : Combined Core-Level Spectroscopy and STM Study
  • 2014
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:23, s. 12532-12540
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomically precise graphene nanoribbons (GNRs) can be fabricated via thermally induced polymerization of halogen containing molecular precursors on metal surfaces. In this paper the effect of substrate reactivity on the growth and structure of armchair GNRs (AGNRs) grown on inert Au(111) and active Cu(111) surfaces has been systematically studied by a combination of core-level X-ray spectroscopies and scanning tunneling microscopy. It is demonstrated that the activation threshold for the dehalogenation process decreases with increasing catalytic activity of the substrate. At room temperature the 10,10'-dibromo-9,9'-bianthracene (DBBA) precursor molecules on Au(111) remain intact, while on Cu(111) a complete surface-assisted dehalogenation takes place. Dehalogenation of precursor molecules on Au(111) only starts at around 80 degrees C and completes at 200 degrees C, leading to the formation of linear polymer chains. On Cu(111) tilted polymer chains appear readily at room temperature or slightly elevated temperatures. Annealing of the DBBA/Cu(111) above 100 degrees C leads to intramolecular cyclodehydrogenation and formation of flat AGNRs at 200 degrees C, while on the Au(111) surface the formation of GNRs takes place only at around 400 degrees C. In STM, nanoribbons have significantly reduced apparent height on Cu(111) as compared to Au(111), 70 +/- 11 pm versus 172 +/- 14 pm, independently of the bias voltage. Moreover, an alignment of GNRs along low-index crystallographic directions of the substrate is evident for Cu(111), while on Au(111) it is more random. Elevating the Cu(111) substrate temperature above 400 degrees C results in a dehydrogenation and subsequent decomposition of GNRs; at 750 degrees C the dehydrogenated carbon species self-organize in graphene islands. In general, our data provide evidence for a significant influence of substrate reactivity on the growth dynamics of GNRs.
  •  
10.
  • Vinogradov, Nikolay, et al. (författare)
  • Hole doping of graphene supported on Ir(111) by AlBr3
  • 2013
  • Ingår i: Applied Physics Letters. - : American Chemical Society (ACS). - 0003-6951 .- 1077-3118. ; 102:6, s. 061601-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this Letter we report an easy and tenable way to tune the type of charge carriers in graphene, using a buried layer of AlBr3 and its derivatives on the graphene/Ir(111) interface. Upon the deposition of AlBr3 on graphene/Ir(111) and subsequent temperature-assisted intercalation of graphene/Ir(111) with atomic Br and AlBr3, pronounced hole doping of graphene is observed. The evolution of the graphene/Br-AlBr3/Ir(111) system at different stages of intercalation has been investigated by means of microbeam low-energy electron microscopy/electron diffraction, core-level photoelectron spectroscopy and angle-resolved photoelectron spectroscopy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 80
Typ av publikation
tidskriftsartikel (41)
bokkapitel (18)
konferensbidrag (15)
samlingsverk (redaktörskap) (2)
proceedings (redaktörskap) (1)
annan publikation (1)
visa fler...
doktorsavhandling (1)
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (66)
övrigt vetenskapligt/konstnärligt (12)
populärvet., debatt m.m. (2)
Författare/redaktör
Maurits, Alexander (26)
Mårtensson, Katarina (25)
Johansson, Alexander (12)
Mårtensson, Jonas, 1 ... (11)
Mårtensson, Nils, 19 ... (11)
Mårtensson, Nils (9)
visa fler...
Preobrajenski, Alexe ... (8)
Johansson, Karl H., ... (8)
Aad, G (7)
Zwalinski, L. (7)
Brenner, Richard (7)
Ekelöf, Tord (7)
Ellert, Mattias (7)
Svensson, Svante, 19 ... (7)
Ovsyannikov, Ruslan (6)
Simonov, Konstantin ... (6)
Lund-Jensen, Bengt (5)
Strandberg, Jonas (5)
Bokan, Petar (5)
Asimakopoulou, Eleni ... (5)
Bergeås Kuutmann, El ... (5)
Ferrari, Arnaud, 197 ... (5)
Isacson, Max F. (5)
Mårtensson, Mikael U ... (5)
Leopold, Alexander (5)
Lundberg, Olof (5)
Shaheen, Rabia (5)
Backman, Filip, 1991 ... (5)
Barranco Navarro, La ... (5)
Bohm, Christian, 194 ... (5)
Clément, Christophe, ... (5)
Hellman, Sten, 1956- (5)
Milstead, David A., ... (5)
Pasuwan, Patrawan, 1 ... (5)
Silverstein, Samuel ... (5)
Sjölin, Jörgen, 1968 ... (5)
Strandberg, Sara, 19 ... (5)
Valdés Santurio, Edu ... (5)
Ellajosyula, Venugop ... (5)
Lindblad, Andreas (5)
Generalov, Alexander (5)
Vinogradov, Nikolay ... (5)
Giangrisostomi, Erik ... (5)
Bai, Ting (5)
Foehlisch, Alexander (5)
Cafolla, Attilio A. (5)
Zagrebina, Elena M. (5)
Nekouei, Ehsan (4)
Preobrajenski, Alexe ... (4)
Föhlisch, Alexander (4)
visa färre...
Lärosäte
Lunds universitet (46)
Uppsala universitet (30)
Kungliga Tekniska Högskolan (21)
Stockholms universitet (7)
Chalmers tekniska högskola (3)
Karolinska Institutet (3)
visa fler...
Malmö universitet (2)
Umeå universitet (1)
Linköpings universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (56)
Svenska (24)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (33)
Samhällsvetenskap (22)
Teknik (18)
Humaniora (11)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy