SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Möller Per Werner) "

Sökning: WFRF:(Möller Per Werner)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bachmann, K. F., et al. (författare)
  • Interactions between extracorporeal support and the cardiopulmonary system
  • 2023
  • Ingår i: Frontiers in Physiology. - 1664-042X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • This review describes the intricate physiological interactions involved in the application of extracorporeal therapy, with specific focus on cardiopulmonary relationships. Extracorporeal therapy significantly influences cardiovascular and pulmonary physiology, highlighting the necessity for clinicians to understand these interactions for improved patient care. Veno-arterial extracorporeal membrane oxygenation (veno-arterial ECMO) unloads the right ventricle and increases left ventricular (LV) afterload, potentially exacerbating LV failure and pulmonary edema. Veno-venous (VV) ECMO presents different challenges, where optimal device and ventilator settings remain unknown. Influences on right heart function and native gas exchange as well as end-expiratory lung volumes are important concepts that should be incorporated into daily practice. Future studies should not be limited to large clinical trials focused on mortality but rather address physiological questions to advance the understanding of extracorporeal therapies. This includes exploring optimal device and ventilator settings in VV ECMO, standardizing cardiopulmonary function monitoring strategies, and developing better strategies for device management throughout their use. In this regard, small human or animal studies and computational physiological modeling may contribute valuable insights into optimizing the management of extracorporeal therapies.
  •  
3.
  • Bachmann, Kaspar F., et al. (författare)
  • Mechanisms maintaining right ventricular contractility-to-pulmonary arterial elastance ratio in VA ECMO: a retrospective animal data analysis of RV-PA coupling
  • 2024
  • Ingår i: JOURNAL OF INTENSIVE CARE. - 2052-0492. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To optimize right ventricular-pulmonary coupling during veno-arterial (VA) ECMO weaning, inotropes, vasopressors and/or vasodilators are used to change right ventricular (RV) function (contractility) and pulmonary artery (PA) elastance (afterload). RV-PA coupling is the ratio between right ventricular contractility and pulmonary vascular elastance and as such, is a measure of optimized crosstalk between ventricle and vasculature. Little is known about the physiology of RV-PA coupling during VA ECMO. This study describes adaptive mechanisms for maintaining RV-PA coupling resulting from changing pre- and afterload conditions in VA ECMO. Methods In 13 pigs, extracorporeal flow was reduced from 4 to 1 L/min at baseline and increased afterload (pulmonary embolism and hypoxic vasoconstriction). Pressure and flow signals estimated right ventricular end-systolic elastance and pulmonary arterial elastance. Linear mixed-effect models estimated the association between conditions and elastance. Results At no extracorporeal flow, end-systolic elastance increased from 0.83 [0.66 to 1.00] mmHg/mL at baseline by 0.44 [0.29 to 0.59] mmHg/mL with pulmonary embolism and by 1.36 [1.21 to 1.51] mmHg/mL with hypoxic pulmonary vasoconstriction (p < 0.001). Pulmonary arterial elastance increased from 0.39 [0.30 to 0.49] mmHg/mL at baseline by 0.36 [0.27 to 0.44] mmHg/mL with pulmonary embolism and by 0.75 [0.67 to 0.84] mmHg/mL with hypoxic pulmonary vasoconstriction (p < 0.001). Coupling remained unchanged (2.1 [1.8 to 2.3] mmHg/mL at baseline; - 0.1 [- 0.3 to 0.1] mmHg/mL increase with pulmonary embolism; - 0.2 [- 0.4 to 0.0] mmHg/mL with hypoxic pulmonary vasoconstriction, p > 0.05). Extracorporeal flow did not change coupling (0.0 [- 0.0 to 0.1] per change of 1 L/min, p > 0.05). End-diastolic volume increased with decreasing extracorporeal flow (7.2 [6.6 to 7.8] ml change per 1 L/min, p < 0.001). Conclusions The right ventricle dilates with increased preload and increases its contractility in response to afterload changes to maintain ventricular-arterial coupling during VA extracorporeal membrane oxygenation.
  •  
4.
  • Bahlmann, Hans, 1973-, et al. (författare)
  • Clinical Use of Lactate Measurements: Comment
  • 2021
  • Ingår i: Anesthesiology. - Philadelphia : Lippincott Williams & Wilkins. - 0003-3022 .- 1528-1175. ; 135:4, s. 766-766
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Berger, D., et al. (författare)
  • Cardiopulmonary interactions-which monitoring tools to use?
  • 2023
  • Ingår i: Frontiers in Physiology. - 1664-042X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart-lung interactions occur due to the mechanical influence of intrathoracic pressure and lung volume changes on cardiac and circulatory function. These interactions manifest as respiratory fluctuations in venous, pulmonary, and arterial pressures, potentially affecting stroke volume. In the context of functional hemodynamic monitoring, pulse or stroke volume variation (pulse pressure variation or stroke volume variability) are commonly employed to assess volume or preload responsiveness. However, correct interpretation of these parameters requires a comprehensive understanding of the physiological factors that determine pulse pressure and stroke volume. These factors include pleural pressure, venous return, pulmonary vessel function, lung mechanics, gas exchange, and specific cardiac factors. A comprehensive knowledge of heart-lung physiology is vital to avoid clinical misjudgments, particularly in cases of right ventricular (RV) failure or diastolic dysfunction. Therefore, when selecting monitoring devices or technologies, these factors must be considered. Invasive arterial pressure measurements of variations in breath-to-breath pressure swings are commonly used to monitor heart-lung interactions. Echocardiography or pulmonary artery catheters are valuable tools for differentiating preload responsiveness from right ventricular failure, while changes in diastolic function should be assessed alongside alterations in airway or pleural pressure, which can be approximated by esophageal pressure. In complex clinical scenarios like ARDS, combined forms of shock or right heart failure, additional information on gas exchange and pulmonary mechanics aids in the interpretation of heart-lung interactions. This review aims to describe monitoring techniques that provide clinicians with an integrative understanding of a patient's condition, enabling accurate assessment and patient care.
  •  
6.
  • Berger, D., et al. (författare)
  • Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return
  • 2016
  • Ingår i: American Journal of Physiology. Heart and Circulatory Physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 311:3
  • Tidskriftsartikel (refereegranskat)abstract
    • According to Guyton’s model of circulation, mean systemic filling pressure (MSFP), right atrial pressure (RAP), and resistance to venous return (RVR) determine venous return. MSFP has been estimated from inspiratory hold-induced changes in RAP and blood flow. We studied the effect of positive end-expiratory pressure (PEEP) and blood volume on venous return and MSFP in pigs. MSFP was measured by balloon occlusion of the right atrium (MSFPRAO), and the MSFP obtained via extrapolation of pressure-flow relationships with airway occlusion (MSFPinsp_hold) was extrapolated from RAP/pulmonary artery flow (QPA) relationships during inspiratory holds at PEEP 5 and 10 cmH2O, after bleeding, and in hypervolemia. MSFPRAO increased with PEEP [PEEP 5, 12.9 (SD 2.5) mmHg; PEEP 10, 14.0 (SD 2.6) mmHg, P = 0.002] without change in QPA [2.75 (SD 0.43) vs. 2.56 (SD 0.45) l/min, P = 0.094]. MSFPRAO decreased after bleeding and increased in hypervolemia [10.8 (SD 2.2) and 16.4 (SD 3.0) mmHg, respectively, P < 0.001], with parallel changes in QPA. Neither PEEP nor volume state altered RVR (P = 0.489). MSFPinsp_hold overestimated MSFPRAO [16.5 (SD 5.8) vs. 13.6 (SD 3.2) mmHg, P = 0.001; mean difference 3.0 (SD 5.1) mmHg]. Inspiratory holds shifted the RAP/QPA relationship rightward in euvolemia because inferior vena cava flow (QIVC) recovered early after an inspiratory hold nadir. The QIVC nadir was lowest after bleeding [36% (SD 24%) of preinspiratory hold at 15 cmH2O inspiratory pressure], and the QIVC recovery was most complete at the lowest inspiratory pressures independent of volume state [range from 80% (SD 7%) after bleeding to 103% (SD 8%) at PEEP 10 cmH2O of QIVC before inspiratory hold]. The QIVC recovery thus defends venous return, possibly via hepatosplanchnic vascular waterfall. © 2016 the American Physiological Society.
  •  
7.
  •  
8.
  • Gejervall, Ann-Louise, 1963, et al. (författare)
  • Electro-acupuncture versus conventional analgesia: a comparison of pain levels during oocyte aspiration and patients' experiences of well-being after surgery
  • 2005
  • Ingår i: Hum Reprod. ; 20:3, s. 728-35
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The primary aims were to compare the pain-relieving effect and post-operative well-being between electro-acupuncture analgesia (EA) and conventional analgesia (CA) comprising opiates. Further aims were to compare time for mobilization, and costs for time and drug consumption. METHODS: In all, 160 women undergoing IVF were randomized, according to a computer-generated list, to EA or CA. Well-being was evaluated with the State Trait Anxiety Inventory (STAI). Pain and subjective expectations and experiences were recorded on a visual analogue scale (VAS). Time and drug consumption were recorded. RESULTS: Although VAS pain ratings were significantly higher at oocyte aspiration (P < 0.0001) and after retrieval (P < 0.01) in the EA than in the CA group, they were similar 60 min after surgery. Both groups had similar STAI well-being scores. The EA group was significantly less tired and confused than the CA group after oocyte aspiration. No significant differences in time and costs for drug consumption were noted. CONCLUSION: EA cannot generally be recommended as a pain-relieving method at oocyte aspiration but might be an alternative for women desiring a non-pharmacological method. An advantage of EA is less post-operative tiredness and confusion compared with CA.
  •  
9.
  • Kohler, A., et al. (författare)
  • Portal hyperperfusion after major liver resection and associated sinusoidal damage is a therapeutic target to protect the remnant liver
  • 2019
  • Ingår i: American Journal of Physiology-Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 317:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Extended liver resection results in loss of a large fraction of the hepatic vascular bed, thereby causing abrupt alterations in perfusion of the remnant liver. Mechanisms of hemodynamic adaptation and associated changes in oxygen metabolism after liver resection and the effect of mechanical portal blood flow reduction were assessed. A pig model (n = 16) of extended partial hepatectomy was established that included continuous observation for 24 h under general anesthesia. Pigs were randomly separated into two groups, one with a portal flow reduction of 70% compared with preoperative values, and the other as a control (n = 8, each). In controls, portal flow [mean (SD)] increased from 74 (8) mL.min(-1).100 preoperatively to 240 (48) mL.min(-1).100 g(-1) at 6 h after resection (P < 0.001). Hepatic arterial buffer response was abolished after resection. Oxygen uptake per unit liver mass increased from 4.0 (1.1) mL.min(-1) .100 g preoperatively to 7.7 (1.7) mL.min(-1) .100 g(-1) 8 h after resection (P = 0.004). Despite this increase in relative oxygen uptake, total hepatic oxygen consumption (Vo(2)) was not maintained, and markers of hypoxia and anaerobic metabolism were significantly increased in hepatocytes after resection. Reduced postoperative portal flow was associated with significantly decreased levels of aspartate aminotransferase and bilirubin and increased hepatic clearance of indocyanine green. In conclusion, major liver resection was associated with persistent portal hyperperfusion, loss of the hepatic arterial buffer response, decreased total hepatic (V) over doto(2) and with increased anaerobic metabolism. Portal flow modulation by partial portal vein occlusion attenuated liver injury after extended liver resection. NEW & NOTEWORTHY Because of continuous monitoring. the experiments allow precise observation of the influence of liver resection on systemic and local abdominal hemodynamic alterations and oxygen metabolism. Major liver resection is associated with significant and persistent portal hyperperfusion and loss of hepatic arterial buffer response. The correlation of portal hyperperfusion and parameters of liver injury and dysfunction offers a novel therapeutic option to attenuate liver injury after extended liver resection.
  •  
10.
  • Liu, S. C., et al. (författare)
  • Effects of Trendelenburg position and increased airway pressure on hepatic regional blood flow of normal and resected liver
  • 2020
  • Ingår i: Journal of Applied Physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 128:3, s. 667-680
  • Tidskriftsartikel (refereegranskat)abstract
    • High portal venous blood flow (Qpv) may contribute to posthepatectomy liver failure. Both Trendelenburg position (TP) and elevated airway pressure (Paw) increase backpressure to venous return and may thereby reduce Qpv. The aim of this study was to evaluate the effects of TP and increased Paw on hepatosplanchnic hemodynamics before and after major liver resection. Arterial and venous blood pressures, Qpv, extrasplanchnic inferior vena cava (Qivc), superior mesenteric (Qsma), hepatic (Qha), and carotid artery blood flows (Qca) were measured in 14 anesthetized and mechanically ventilated pigs in supine and 30 degrees TP during end-expiratory hold at 5 cmH(2)O positive end-expiratory pressure (PEEP) and during inspiratory hold with Paw of 15, 20, 25, and 30 cmH(2)O. After major liver resection, the interventions were repeated in seven randomly selected animals. At baseline, TP increased right atrial pressure (Pra) and Qpv but not Qivc or Qsma. With increased Paw in the supine position, Pra increased and all regional blood flows decreased. TP during increasing Paw attenuated the decrease in Qpv, Qsma, and Qivc but not in Qha or Qca. After liver resection, the effects of TP during increasing Paw remained, albeit at higher portal vein pressures. However, TP alone did not increase IVC venous return. Increasing Paw in supine position reduces Qpv and all other regional flows, while the reduction in Qpv is attenuated in TP, suggesting partly preserved liver waterfall or decreased intrahepatic resistance. Liver resection, despite resulting in major intrahepatic blood flow changes, does not fundamentally influence the interaction of increasing Paw and TP on regional perfusion. NEW & NOTEWORTHY In Trendelenburg position (TP), liver blood flow is the only contributor to increased venous return measured in the inferior vena cava (IVC), which attenuates the decreased IVC venous return induced by increasing airway pressure. After liver resection, TP similarly attenuated effects of increasing airway pressure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy