SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Müller Buschbaum P.) "

Sökning: WFRF:(Müller Buschbaum P.)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergendal, Erik, et al. (författare)
  • Tuneable interfacial surfactant aggregates mimic lyotropic phases and facilitate large scale nanopatterning
  • 2021
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 13:1, s. 371-379
  • Tidskriftsartikel (refereegranskat)abstract
    • It is shown that the air-liquid interface can be made to display the same rich curvature phenomena as common lyotropic liquid crystal systems. Through mixing an insoluble, naturally occurring, branched fatty acid, with an unbranched fatty acid of the same length, systematic variation in the packing constraints at the air-water interface could be obtained. The combination of atomic force microscopy and neutron reflectometry is used to demonstrate that the water surface exhibits significant tuneable topography. By systematic variation of the two fatty acid proportions, ordered arrays of monodisperse spherical caps, cylindrical sections, and a mesh phase are all observed, as well as the expected lamellar structure. The tuneable deformability of the air-water interface permits this hitherto unexplored topological diversity, which is analogous to the phase elaboration displayed by amphiphiles in solution. It offers a wealth of novel possibilities for the tailoring of nanostructure
  •  
2.
  • Brett, Calvin, et al. (författare)
  • Humidity-Induced Nanoscale Restructuring in PEDOT:PSS and Cellulose Nanofibrils Reinforced Biobased Organic Electronics
  • 2021
  • Ingår i: Advanced Electronic Materials. - : Wiley. - 2199-160X. ; 7:6, s. 2100137-
  • Tidskriftsartikel (refereegranskat)abstract
    • In times where research focuses on the use of organic polymers as a base for complex organic electronic applications and improving device efficiencies, degradation is still less intensively addressed in fundamental studies. Hence, advanced neutron scattering methods are applied to investigate a model system for organic electronics composed of the widely used conductive polymer blend poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) together with nanocellulose as flexible reinforcing template material. In particular, the impact of relative humidity (RH) on the nanostructure evolution is studied in detail. The implications are discussed from a device performance point of view and the changing nanostructure is correlated with macroscale physical properties such as conductivity. The first humidification (95% RH) leads to an irreversible decrease of conductivity. After the first humidification cycle, however, the conductivity can be reversibly regained when returning to low humidity values (5% RH), which is important for device manufacturing. This finding can directly contribute to an improved usability of emerging organic electronics in daily live.
  •  
3.
  • Chen, Wei, et al. (författare)
  • In situ Grazing-Incidence Small-Angle X-ray Scattering Observation of Gold Sputter Deposition on a PbS Quantum Dot Solid
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : NLM (Medline). - 1944-8244 .- 1944-8252. ; 12:41, s. 46942-46952
  • Tidskriftsartikel (refereegranskat)abstract
    • For PbS quantum dot (QD)-based optoelectronic devices, gold is the most frequently used electrode material. In most device architectures, gold is in direct contact with the QD solid. To better understand the formation of the interface between gold and a close-packed QD layer at an early stage, in situ grazing-incidence small-angle X-ray scattering is used to observe the gold sputter deposition on a 1,2-ethanedithiol (EDT)-treated PbS QD solid. In the kinetics of gold layer growth, the forming and merging of small gold clusters (radius less than 1.6 nm) are observed at the early stages. The thereby formed medium gold clusters (radius between 1.9-2.4 nm) are influenced by the QDs' templating effect. Furthermore, simulations suggest that the medium gold clusters grow preferably along the QDs' boundaries rather than as a top coating of the QDs. When the thickness of the sputtered gold layer reaches 6.25 nm, larger gold clusters with a radius of 5.3 nm form. Simultaneously, a percolation layer with a thickness of 2.5 nm is established underneath the gold clusters. This fundamental understanding of the QD-gold interface formation will help to control the implementation of sputtered gold electrodes on close-packed QD solids in device manufacturing processes.
  •  
4.
  • Chen, W., et al. (författare)
  • Operando structure degradation study of PbS quantum dot solar cells
  • 2021
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 14:6, s. 3420-3429
  • Tidskriftsartikel (refereegranskat)abstract
    • PbS quantum dot (QD) solar cells demonstrate great potential in solar energy conversion with a broad and flexible spectral response. Even though long-term storage stabilities of QD solar cells were reported in literature, the operation stability from a more practical aspect, to date, has been not yet investigated. Herein, we observe the structure degradation process of a PbS QD-ink based solar cell during the device operation. Simultaneously to probing the solar cell parameters, the overall structure evolutions of the QDs in both, active layer and hole transport layer of the solar cell are studied with grazing-incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS). We find a spontaneous decrease of the QD inter-dot distance with an increase in the spatial disorder in the active layer (PbX2-PbS QDs, X = I, and Br) during the operation induced degradation. Consequently, the structure disorder-induced broadening of the energy state distribution is responsible for the decrease in open-circuit voltageVocleading to the device degradation. These findings elucidate the origin of light-soaking as well as the structure degradation of QD ink-based solar cells and indicate that the stability of the device can be realized by the positional stabilization of the QDs in the QD solid.
  •  
5.
  • Jiang, X., et al. (författare)
  • Revealing Donor–Acceptor Interaction on the Printed Active Layer Morphology and the Formation Kinetics for Nonfullerene Organic Solar Cells at Ambient Conditions
  • 2022
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 12:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Slot-die coating is a powerful method for upscaling the production of organic solar cells (OSCs) with low energy consumption print processes at ambient conditions. Herein, chlorobenzene (CB) and chloroform (CF) are compared as host solvents for printing films of the neat novel fused-ring unit based wide-bandgap donor polymer (PDTBT2T-FTBDT), the small molecule nonfullerene acceptor based on a fused ring with a benzothiadiazole core (BTP-4F) as well as the respective PDTBT2T-FTBDT:BTP-4F blend films at room temperature in air. Using CF printing of the PDTBT2T-FTBDT:BTP-4F active layer, OSCs with a high power conversion efficiency of up to 13.2% are reached in ambient conditions. In comparison to CB printed blend films, the active layer printed out of CF has a superior morphology, a smoother film surface and a more pronounced face-on orientation of the crystallites, which altogether result in an enhanced exciton dissociation, a superior charge transport, and suppressed nonradiative charge carrier recombination. Based on in situ studies of the slot-die coating process of PDTBT2T-FTBDT, BTP-4F, and PDTBT2T-FTBDT:BTP-4F films, the details of the film formation kinetics are clarified, which cause the superior behavior for CF compared to CB printing due to balancing the aggregation and crystallization of donor and acceptor. 
  •  
6.
  • Li, N., et al. (författare)
  • Tailoring Ordered Mesoporous Titania Films via Introducing Germanium Nanocrystals for Enhanced Electron Transfer Photoanodes for Photovoltaic Applications
  • 2021
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 31:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on a diblock-copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO2/GeOx nanocomposite films are probed via scanning electron microscopy and grazing-incidence small-angle X-ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air-annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air-annealed nanocomposite films are studied, and it is found that, compared with pristine TiO2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short-circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis. 
  •  
7.
  • Schaper, S. J., et al. (författare)
  • Revealing the growth of copper on polystyrene- : Block -poly(ethylene oxide) diblock copolymer thin films with in situ GISAXS
  • 2021
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 13:23, s. 10555-10565
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper (Cu) as an excellent electrical conductor and the amphiphilic diblock copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) as a polymer electrolyte and ionic conductor can be combined with an active material in composite electrodes for polymer lithium-ion batteries (LIBs). As interfaces are a key issue in LIBs, sputter deposition of Cu contacts on PS-b-PEO thin films with high PEO fraction is investigated with in situ grazing-incidence small-angle X-ray scattering (GISAXS) to follow the formation of the Cu layer in real-time. We observe a hierarchical morphology of Cu clusters building larger Cu agglomerates. Two characteristic distances corresponding to the PS-b-PEO microphase separation and the Cu clusters are determined. A selective agglomeration of Cu clusters on the PS domains explains the origin of the persisting hierarchical morphology of the Cu layer even after a complete surface coverage is reached. The spheroidal shape of the Cu clusters growing within the first few nanometers of sputter deposition causes a highly porous Cu-polymer interface. Four growth stages are distinguished corresponding to different kinetics of the cluster growth of Cu on PS-b-PEO thin films: (I) nucleation, (II) diffusion-driven growth, (III) adsorption-driven growth, and (IV) grain growth of Cu clusters. Percolation is reached at an effective Cu layer thickness of 5.75 nm. 
  •  
8.
  • Wang, W., et al. (författare)
  • Aging of low-temperature derived highly flexible nanostructured TiO 2 /P3HT hybrid films during bending
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 7:17, s. 10805-10814
  • Tidskriftsartikel (refereegranskat)abstract
    • To meet the demand for low-cost, lightweight, portable and building-integrated solar cells, developing flexible and cost-efficient photo-active hybrid films is of significant interest. In this work, we investigate the mechanical properties of hybrid layers consisting of mesoporous TiO 2 filled with poly(3-hexylthiophene-2,5-diyl) (P3HT) as a function of the number of bending cycles. The TiO 2 /P3HT layers are deposited on flexible PET substrates at low temperatures (≤140 °C), which is beneficial for reducing the processing energy input and in turn lowering the production costs. Non-filled and partially filled mesoporous titania films are studied for comparison. The surface morphology is examined with scanning electron microscopy (SEM) before and after the bending tests. The inner film morphology is characterized with grazing incidence small-angle X-ray scattering (GISAXS). Based on the observed morphology, micromechanical models are used to analyze the mechanical properties of the investigated films. The results show that the TiO 2 /P3HT layers have a low elastic modulus and P3HT helps to stabilize the titania nanostructures against fracture. The SEM observations are well explained with the established models in a quantitative way.
  •  
9.
  • Zou, Y., et al. (författare)
  • Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:47, s. 52643-52651
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite solar cells (PSCs) have been developed as a promising photovoltaic technology because of their excellent photovoltaic performance. However, interfacial recombination and charge carrier transport losses at the surface greatly limit the performance and stability of PSCs. In this work, the fabrication of high-quality PSCs based on methylammonium lead iodide with excellent ambient stability is reported. An anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), is introduced to simultaneously passivate the defect states and stabilize the cubic phase of the perovskite film. The SDBS located at grain boundaries and the surface of the active layer can effectively passivate under-coordinated lead ions and protect the perovskite components from water-induced degradation. As a result, a champion power conversion efficiency (PCE) of 19.42% is achieved with an open-circuit voltage (VOC) of 1.12 V, a short-circuit current (JSC) of 23.23 mA cm-2, and a fill factor (FF) of 74% in combination with superior moisture stability. The SDBS-passivated devices retain 80% of their initial average PCE after 2112 h of storage under ambient conditions.
  •  
10.
  • Brett, Calvin, et al. (författare)
  • Water-Induced Structural Rearrangements on the Nanoscale in Ultrathin Nanocellulose Films
  • 2019
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 0024-9297 .- 1520-5835. ; 52:12, s. 4721-4728
  • Tidskriftsartikel (refereegranskat)abstract
    • Many nanoscale biopolymer building blocks with defect-free molecular structure and exceptional mechanical properties have the potential to surpass the performance of existing fossil-based materials with respect to barrier properties, load-bearing substrates for advanced functionalities, as well as light-weight construction. Comprehension and control of performance variations of macroscopic biopolymer materials caused by humidity-driven structural changes at the nanoscale are imperative and challenging. A long-lasting challenge is the interaction with water molecules causing reversible changes in the intrinsic molecular structures that adversely affects the macroscale performance. Using in situ advanced X-ray and neutron scattering techniques, we reveal the structural rearrangements at the nanoscale in ultrathin nanocellulose films with humidity variations. These reversible rearrangements are then correlated with wettability that can be tuned. The results and methodology have general implications not only on the performance of cellulose-based materials but also for hierarchical materials fabricated with other organic and inorganic moisture-sensitive building blocks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy