SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Müller Navarra Dörthe) "

Sökning: WFRF:(Müller Navarra Dörthe)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kraemer, Benjamin M., et al. (författare)
  • Climate change drives widespread shifts in lake thermal habitat
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:6, s. 521-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978-1995) and recent (1996-2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity. Using measurements from 139 global lakes, the authors demonstrate how long-term thermal habitat change in lakes is exacerbated by species' seasonal and depth-related constraints. They further reveal higher change in tropical lakes, and those with high biodiversity and endemism.
  •  
2.
  • Pilla, Rachel M., et al. (författare)
  • Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
  •  
3.
  • Sharma, Sapna, et al. (författare)
  • A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009
  • 2015
  • Ingår i: Scientific Data. - : Macmillan Publishers Limited. - 2052-4463. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
  •  
4.
  • Zhang, Chen, et al. (författare)
  • Physiological and nutritional constraints on zooplankton productivity due to eutrophication and climate change predicted using a resource-based modeling approach
  • 2022
  • Ingår i: Canadian Journal of Fisheries and Aquatic Sciences. - : Canadian Science Publishing. - 0706-652X .- 1205-7533. ; 79:3, s. 472-486
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests that zooplankton production is affected by physiological and nutritional constraints due to climate change and eutrophication, which in turn could have broad implications for food-web dynamics and fisheries production. In this study, we developed a resource-based zooplankton production dynamics model that causally links freshwater cladoceran and copepod daily production-to-biomass (P/B) ratios with water temperature, phytoplankton biomass and community composition, and zooplankton feeding selectivity. This model was used to evaluate constraints on zooplankton growth under four hypothetical scenarios: involving natural plankton community seasonal succession; lake fertilization to enhance fisheries production; eutrophication; and climatic warming. Our novel modeling approach predicts zooplankton production is strongly dependent on seasonal variation in resource availability and quality, which results in more complex zooplankton dynamics than predicted by simpler temperature-dependent models. For mesotrophic and hypereutrophic lakes, our study suggests that the ultimate control over zooplankton P/B ratios shifts from physiological control during colder periods to strong resource control during warmer periods. Our resource-based model provides important insights into the nature of biophysical control of zooplankton under a changing climate that has crucial implications for food web energy transfer and fisheries production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy