SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ma Yaoming) "

Sökning: WFRF:(Ma Yaoming)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Xuelong, et al. (författare)
  • Investigation of Precipitation Process in the Water Vapor Channel of the Yarlung Zsangbo Grand Canyon
  • 2024
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 105:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Yarlung Zsangbo Grand Canyon (YGC) is an important pathway for water vapor transport from southern Asia to the Tibetan Plateau (TP). This area exhibits one of the highest frequencies of convective activity in China, and precipitation often induces natural disasters in local communities, which can dramatically affect their livelihoods. In addition, the produced precipitation gives rise to vast glaciers and large rivers around the YGC. In 2018, the Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team to conduct an "investigation of the precipitation process in the water vapor channel of the Yarlung Zsangbo Grand Canyon" (INVC) in the southeastern TP. This team subsequently established a comprehensive observation system of land-air interaction, water vapor, clouds, and rainfall activity in the YGC. This paper introduces the developed observation system and summarizes the preliminary results obtained during the first two years of the project. Using this INVC observation network, herein, we focus on the development of rainfall events on the southeastern TP. This project also helps to monitor geohazards in the key area of the Sichuan-Tibet railway, which traverses the northern YGC. The observation datasets will benefit future research on mountain meteorology.
  •  
2.
  • Coners, Heinz, et al. (författare)
  • Evapotranspiration and water balance of high-elevation grassland on the Tibetan Plateau
  • 2016
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694. ; 533, s. 557-566
  • Tidskriftsartikel (refereegranskat)abstract
    • High-elevation grasslands of the Cyperaceae Kobresia pygmaea cover nearly half a million km2 on the Tibetan Plateau. As a consequence of climate change, precipitation patterns in this monsooninfluenced region may change with possible consequences for grassland productivity. Yet, not much is known about the water cycle in this second largest alpine ecosystem of the world. We measured the evapotranspiration of a high-elevation Kobresia pasture system at 4400 m a.s.l. in the south-eastern part of the plateau in two summers using three different approaches, weighable micro-lysimeters, eddy covariance measurements, and water balance modeling with the soil–plant–atmosphere transfer model SEWAB. In good agreement among the three approaches, we found ET rates of 4–6 mm d-1 in moist summer periods (June–August) and 2mmd-1 in dry periods, despite the high elevation and a leaf area index of only 1. Measured ET rates were comparable to rates reported from alpine grasslands at 1500–2500 m a.s.l. in temperate mountains, and also matched ET rates of managed lowland grasslands in the temperate zone. At the study site with 430 mm annual precipitation, low summer rainfall reduced ET significantly and infiltration into the subsoil occurred only in moist periods. Our results show that the evapotranspiration of high-elevation grasslands at 4400 m can be as high as in lowland grasslands despite large elevational changes in abiotic and biotic drivers of ET, and periodic water shortage is likely to influence large parts of the Tibetan Kobresia pastures.
  •  
3.
  • Ehlers, Todd A., et al. (författare)
  • Past, present, and future geo-biosphere interactions on the Tibetan Plateau and implications for permafrost
  • 2022
  • Ingår i: Earth-Science Reviews. - : Elsevier BV. - 0012-8252. ; 234
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between the atmosphere, biosphere, cryosphere, hydrosphere, and geosphere are most active in the critical zone, a region extending from the tops of trees to the top of unweathered bedrock. Changes in one or more of these spheres can result in a cascade of changes throughout the system in ways that are often poorly understood. Here we investigate how past and present climate change have impacted permafrost, hydrology, and ecosystems on the Tibetan Plateau. We do this by compiling existing climate, hydrologic, cryosphere, biosphere, and geologic studies documenting change over decadal to glacial-interglacial timescales and longer. Our emphasis is on showing present-day trends in environmental change and how plateau ecosystems have largely flourished under warmer and wetter periods in the geologic past. We identify two future pathways that could lead to either a favorable greening or unfavorable degradation and desiccation of plateau ecosystems. Both paths are plausible given the available evidence. We contend that the key to which pathway future generations experience lies in what, if any, human intervention measures are implemented. We conclude with suggested management strategies that can be implemented to facilitate a future greening of the Tibetan Plateau.
  •  
4.
  • Ingrisch, Johannes, et al. (författare)
  • Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697. ; 505, s. 1213-1224
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with 13CO2 pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C ha−1), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C m−2 d−1 in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-termgrazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil.
  •  
5.
  • Miehe, Georg, et al. (författare)
  • The Kobresia pygmaea ecosystem of the Tibetan highlands – Origin, functioning and degradation of the world's largest pastoral alpine ecosystem: Kobresia pastures of Tibet
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 648, s. 754-771
  • Tidskriftsartikel (refereegranskat)abstract
    • With 450,000 km2 Kobresia (syn. Carex) pygmaea dominated pastures in the eastern Tibetan highlands are the world's largest pastoral alpine ecosystem forming a durable turf cover at 3000–6000 m a.s.l. Kobresia's resilience and competitiveness is based on dwarf habit, predominantly below-ground allocation of photo assimilates, mixture of seed production and clonal growth, and high genetic diversity. Kobresia growth is co-limited by livestock-mediated nutrient withdrawal and, in the drier parts of the plateau, low rainfall during the short and cold growing season. Overstocking has caused pasture degradation and soil deterioration over most parts of the Tibetan highlands and is the basis for this man-made ecosystem. Natural autocyclic processes of turf destruction and soil erosion are initiated through polygonal turf cover cracking, and accelerated by soil-dwelling endemic small mammals in the absence of predators. The major consequences of vegetation cover deterioration include the release of large amounts of C, earlier diurnal formation of clouds, and decreased surface temperatures. These effects decrease the recovery potential of Kobresia pastures and make them more vulnerable to anthropogenic pressure and climate change. Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.
  •  
6.
  • Yao, Tandong, et al. (författare)
  • Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multi-disciplinary approach with observation, modeling and analysis
  • 2019
  • Ingår i: Bulletin of The American Meteorological Society. - 0003-0007 .- 1520-0477. ; :March, s. 423-444
  • Tidskriftsartikel (refereegranskat)abstract
    • The Third Pole (TP) is experiencing rapid warming and is currently in its warmest period in the past 2,000 years. This paper reviews the latest development in multidisciplinary TP research associated with this warming. The rapid warming facilitates intense and broad glacier melt over most of the TP, although some glaciers in the northwest are advancing. By heating the atmosphere and reducing snow/ice albedo, aerosols also contribute to the glaciers melting. Glacier melt is accompanied by lake expansion and intensification of the water cycle over the TP. Precipitation has increased over the eastern and northwestern TP. Meanwhile, the TP is greening and most regions are experiencing advancing phenological trends, although over the southwest there is a spring phenological delay mainly in response to the recent decline in spring precipitation. Atmospheric and terrestrial thermal and dynamical processes over the TP affect the Asian monsoon at different scales. Recent evidence indicates substantial roles that mesoscale convective systems play in the TP’s precipitation as well as an association between soil moisture anomalies in the TP and the Indian monsoon. Moreover, an increase in geohazard events has been associated with recent environmental changes, some of which have had catastrophic consequences caused by glacial lake outbursts and landslides. Active debris flows are growing in both frequency of occurrences and spatial scale. Meanwhile, new types of disasters, such as the twin ice avalanches in Ali in 2016, are now appearing in the region. Adaptation and mitigation measures should be taken to help societies’ preparation for future environmental challenges. Some key issues for future TP studies are also discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy