SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maaskola Jonas) "

Sökning: WFRF:(Maaskola Jonas)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Anders, Gerd, et al. (författare)
  • doRiNA : a database of RNA interactions in post-transcriptional regulation.
  • 2012
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 40:Database issue
  • Tidskriftsartikel (refereegranskat)abstract
    • In animals, RNA binding proteins (RBPs) and microRNAs (miRNAs) post-transcriptionally regulate the expression of virtually all genes by binding to RNA. Recent advances in experimental and computational methods facilitate transcriptome-wide mapping of these interactions. It is thought that the combinatorial action of RBPs and miRNAs on target mRNAs form a post-transcriptional regulatory code. We provide a database that supports the quest for deciphering this regulatory code. Within doRiNA, we are systematically curating, storing and integrating binding site data for RBPs and miRNAs. Users are free to take a target (mRNA) or regulator (RBP and/or miRNA) centric view on the data. We have implemented a database framework with short query response times for complex searches (e.g. asking for all targets of a particular combination of regulators). All search results can be browsed, inspected and analyzed in conjunction with a huge selection of other genome-wide data, because our database is directly linked to a local copy of the UCSC genome browser. At the time of writing, doRiNA encompasses RBP data for the human, mouse and worm genomes. For computational miRNA target site predictions, we provide an update of PicTar predictions.
  •  
3.
  • Asp, Michaela, et al. (författare)
  • Spatial detection of fetal marker genes expressed at low level in adult human heart tissue
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart failure is a major health problem linked to poor quality of life and high mortality rates. Hence, novel biomarkers, such as fetal marker genes with low expression levels, could potentially differentiate disease states in order to improve therapy. In many studies on heart failure, cardiac biopsies have been analyzed as uniform pieces of tissue with bulk techniques, but this homogenization approach can mask medically relevant phenotypes occurring only in isolated parts of the tissue. This study examines such spatial variations within and between regions of cardiac biopsies. In contrast to standard RNA sequencing, this approach provides a spatially resolved transcriptome- and tissue-wide perspective of the adult human heart, and enables detection of fetal marker genes expressed by minor subpopulations of cells within the tissue. Analysis of patients with heart failure, with preserved ejection fraction, demonstrated spatially divergent expression of fetal genes in cardiac biopsies.
  •  
4.
  • Bergenstråhle, Ludvig, et al. (författare)
  • Super-resolved spatial transcriptomics by deep data fusion
  • 2022
  • Ingår i: Nature Biotechnology. - : Nature Research. - 1087-0156 .- 1546-1696. ; 40:4, s. 476-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Current methods for spatial transcriptomics are limited by low spatial resolution. Here we introduce a method that integrates spatial gene expression data with histological image data from the same tissue section to infer higher-resolution expression maps. Using a deep generative model, our method characterizes the transcriptome of micrometer-scale anatomical features and can predict spatial gene expression from histology images alone. 
  •  
5.
  •  
6.
  • Berglund, Emelie, et al. (författare)
  • Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Intra-tumor heterogeneity is one of the biggest challenges in cancer treatment today. Here we investigate tissue-wide gene expression heterogeneity throughout a multifocal prostate cancer using the spatial transcriptomics (ST) technology. Utilizing a novel approach for deconvolution, we analyze the transcriptomes of nearly 6750 tissue regions and extract distinct expression profiles for the different tissue components, such as stroma, normal and PIN glands, immune cells and cancer. We distinguish healthy and diseased areas and thereby provide insight into gene expression changes during the progression of prostate cancer. Compared to pathologist annotations, we delineate the extent of cancer foci more accurately, interestingly without link to histological changes. We identify gene expression gradients in stroma adjacent to tumor regions that allow for re-stratification of the tumor microenvironment. The establishment of these profiles is the first step towards an unbiased view of prostate cancer and can serve as a dictionary for future studies.
  •  
7.
  • Chen, Kevin, et al. (författare)
  • Reexamining microRNA site accessibility in Drosophila : a population genomics study.
  • 2009
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Kertesz et al. (Nature Genetics 2008) described PITA, a miRNA target prediction algorithm based on hybridization energy and site accessibility. In this note, we used a population genomics approach to reexamine their data and found that the PITA algorithm had lower specificity than methods based on evolutionary conservation at comparable levels of sensitivity.We also showed that deeply conserved miRNAs tend to have stronger hybridization energies to their targets than do other miRNAs. Although PITA had higher specificity in predicting targets than a naïve seed-match method, this signal was primarily due to the use of a single cutoff score for all miRNAs and to the observed correlation between conservation and hybridization energy. Overall, our results clarify the accuracy of different miRNA target prediction algorithms in Drosophila and the role of site accessibility in miRNA target prediction.
  •  
8.
  • Erickson, A, et al. (författare)
  • Spatially resolved clonal copy number alterations in benign and malignant tissue
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 608:7922, s. 360-
  • Tidskriftsartikel (refereegranskat)abstract
    • Defining the transition from benign to malignant tissue is fundamental to improving early diagnosis of cancer1. Here we use a systematic approach to study spatial genome integrity in situ and describe previously unidentified clonal relationships. We used spatially resolved transcriptomics2 to infer spatial copy number variations in >120,000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue using an organ-wide approach focused on the prostate. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of capturing the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.
  •  
9.
  •  
10.
  • Erickson, Andrew, et al. (författare)
  • The spatial landscape of clonal somatic mutations in benign and malignant tissue
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Defining the transition from benign to malignant tissue is fundamental to improve early diagnosis of cancer. Here, we provide an unsupervised approach to study spatial genome integrity in situ to gain molecular insight into clonal relationships. We employed spatially resolved transcriptomics to infer spatial copy number variations in >120 000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of an unsupervised approach to capture the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy