SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(MacCaferri A.) "

Sökning: WFRF:(MacCaferri A.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Navarrini, A., et al. (författare)
  • Design of PHAROS2 Phased Array Feed
  • 2018
  • Ingår i: 2018 2nd URSI Atlantic Radio Science Meeting, AT-RASC 2018.
  • Konferensbidrag (refereegranskat)abstract
    • We describe the design and architecture of PHAROS2, a cryogenically cooled 4-8 GHz Phased Array Feed (PAF) demonstrator with digital beamformer for radio astronomy application. The instrument will be capable of synthesizing four independent single-polarization beams by combining 24 active elements of an array of Vivaldi antennas. PHAROS2, the upgrade of PHAROS (PHased Arrays for Reflector Observing Systems), features: a) commercial cryogenic LNAs with state-of-the-art performance, b) a 'Warm Section' for signal filtering, conditioning and single downconversion to select a≈275 MHz: Intermediate Frequency (IF) bandwidth within the 4-8 GHz Radio Frequency (RF) band, c) an IF signal transportation by analog WDM (Wavelength Division Mutiplexing) fiber-optic link, and d) a FPGA-based Italian Tile Processing Module (iTPM) digital backend. PHAROS2 will be mounted at the primary focus of the 76-m diameter Lovell radio telescope (Jodrell Bank Observatory, UK) for technical and scientific validation.
  •  
2.
  • Kirsten, Franz, 1983, et al. (författare)
  • A repeating fast radio burst source in a globular cluster
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 602:7898, s. 585-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are flashes of unknown physical origin1. The majority of FRBs have been seen only once, although some are known to generate multiple flashes2,3. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission4,5. Recently, the discovery6 of another repeater (FRB 20200120E) was announced, in the direction of the nearby galaxy M81, with four potential counterparts at other wavelengths6. Here we report observations that localized the FRB to a globular cluster associated with M81, where it is 2 parsecs away from the optical centre of the cluster. Globular clusters host old stellar populations, challenging FRB models that invoke young magnetars formed in a core-collapse supernova. We propose instead that FRB 20200120E originates from a highly magnetized neutron star formed either through the accretion-induced collapse of a white dwarf, or the merger of compact stars in a binary system7. Compact binaries are efficiently formed inside globular clusters, so a model invoking them could also be responsible for the observed bursts.
  •  
3.
  • Nimmo, K., et al. (författare)
  • Burst timescales and luminosities as links between young pulsars and fast radio bursts
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:3, s. 393-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are extragalactic radio flashes of unknown physical origin. Their high luminosities and short durations require extreme energy densities, such as those found in the vicinity of neutron stars and black holes. Studying the burst intensities and polarimetric properties on a wide range of timescales, from milliseconds down to nanoseconds, is key to understanding the emission mechanism. However, high-time-resolution studies of FRBs are limited by their unpredictable activity levels, available instrumentation and temporal broadening in the intervening ionized medium. Here we show that the repeating FRB 20200120E can produce isolated shots of emission as short as about 60 nanoseconds in duration, with brightness temperatures as high as 3 × 1041 K (excluding relativistic effects), comparable with ‘nano-shots’ from the Crab pulsar. Comparing both the range of timescales and luminosities, we find that FRB 20200120E observationally bridges the gap between known Galactic young pulsars and magnetars and the much more distant extragalactic FRBs. This suggests a common magnetically powered emission mechanism spanning many orders of magnitude in timescale and luminosity. In this Article, we probe a relatively unexplored region of the short-duration transient phase space; we highlight that there probably exists a population of ultrafast radio transients at nanosecond to microsecond timescales, which current FRB searches are insensitive to.
  •  
4.
  • Nimmo, K., et al. (författare)
  • Milliarcsecond Localization of the Repeating FRB 20201124A
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 927:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Very long baseline interferometric (VLBI) localizations of repeating fast radio bursts (FRBs) have demonstrated a diversity of local environments: from nearby star-forming regions to globular clusters. Here we report the VLBI localization of FRB 20201124A using an ad hoc array of dishes that also participate in the European VLBI Network (EVN). In our campaign, we detected 18 bursts from FRB 20201124A at two separate epochs. By combining the visibilities from both epochs, we were able to localize FRB 20201124A with a 1 sigma uncertainty of 2.7 mas. We use the relatively large burst sample to investigate astrometric accuracy and find that for greater than or similar to 20 baselines (greater than or similar to 7 dishes) we can robustly reach milliarcsecond precision even using single-burst data sets. Subarcsecond precision is still possible for single bursts, even when only similar to 6 baselines (four dishes) are available. In such cases, the limited uv coverage for individual bursts results in very high side-lobe levels. Thus, in addition to the peak position from the dirty map, we also explore smoothing the structure in the dirty map by fitting Gaussian functions to the fringe pattern in order to constrain individual burst positions, which we find to be more reliable. Our VLBI work places FRB 20201124A 710 +/- 30 mas (1 sigma uncertainty) from the optical center of the host galaxy, consistent with originating from within the recently discovered extended radio structure associated with star formation in the host galaxy. Future high-resolution optical observations, e.g., with Hubble Space Telescope, can determine the proximity of FRB 20201124A's position to nearby knots of star formation.
  •  
5.
  • Egron, E., et al. (författare)
  • Single-dish and VLBI observations of Cygnus X-3 during the 2016 giant flare episode
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 471:3, s. 2703-2714
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016 September, the microquasar Cygnus X-3 underwent a giant radio flare, which was monitored for 6 d with the Medicina Radio Astronomical Station and the Sardinia Radio Telescope. Long observations were performed in order to follow the evolution of the flare on an hourly scale, covering six frequency ranges from 1.5 to 25.6 GHz. The radio emission reached a maximum of 13.2 +/- 0.7 Jy at 7.2 GHz and 10 +/- 1 Jy at 18.6 GHz. Rapid flux variations were observed at high radio frequencies at the peak of the flare, together with rapid evolution of the spectral index: a steepened from 0.3 to 0.6 (with S-nu alpha nu(-alpha)) within 5 h. This is the first time that such fast variations are observed, giving support to the evolution from optically thick to optically thin plasmons in expansion moving outward from the core. Based on the Italian network (Noto, Medicina and SRT) and extended to the European antennas (Torun, Yebes, Onsala), very long baseline interferometry (VLBI) observations were triggered at 22 GHz on five different occasions, four times prior to the giant flare, and once during its decay phase. Flux variations of 2 h duration were recorded during the first session. They correspond to a mini-flare that occurred close to the core 10 d before the onset of the giant flare. From the latest VLBI observation we infer that 4 d after the flare peak the jet emission was extended over 30 mas.
  •  
6.
  • Hewitt, Dante M., et al. (författare)
  • Milliarcsecond localization of the hyperactive repeating FRB 20220912A
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:2, s. 1814-1826
  • Tidskriftsartikel (refereegranskat)abstract
    • We present very long-baseline interferometry (VLBI) observations of the hyperactive repeating FRB 20220912A using the European VLBI Network (EVN) outside of regular observing sessions (EVN-Lite). We detected 150 bursts from FRB 20220912A over two observing epochs in 2022 October. Combining the burst data allows us to localize FRB 20220912A to a precision of a few milliarcseconds, corresponding to a transverse scale of less than 10 pc at the distance of the source. This precise localization shows that FRB 20220912A lies closer to the centre of its host galaxy than previously found, although still significantly offset from the host galaxy's nucleus. On arcsecond scales, FRB 20220912A is coincident with a persistent continuum radio source known from archival observations; however, we find no compact persistent emission on milliarcsecond scales. The 5σ upper limit on the presence of such a compact persistent radio source is 120 μJy, corresponding to a luminosity limit of (D/362.4 Mpc)erg s-1 Hz-1. The persistent radio emission is thus likely to be from star formation in the host galaxy. This is in contrast to some other active FRBs, such as FRB 20121102A and FRB 20190520B.
  •  
7.
  • Kummamuru, P., et al. (författare)
  • A monitoring campaign (2013-2020) of ESA's Mars Express to study interplanetary plasma scintillation
  • 2023
  • Ingår i: Publications Astronomical Society of Australia. - 1448-6083 .- 1323-3580. ; 40
  • Tidskriftsartikel (refereegranskat)abstract
    • The radio signal transmitted by the Mars Express (MEX) spacecraft was observed regularly between the years 2013-2020 at X-band (8.42 GHz) using the European Very Long Baseline Interferometry (EVN) network and University of Tasmania's telescopes. We present a method to describe the solar wind parameters by quantifying the effects of plasma on our radio signal. In doing so, we identify all the uncompensated effects on the radio signal and see which coronal processes drive them. From a technical standpoint, quantifying the effect of the plasma on the radio signal helps phase referencing for precision spacecraft tracking. The phase fluctuation of the signal was determined for Mars' orbit for solar elongation angles from 0 to 180 deg. The calculated phase residuals allow determination of the phase power spectrum. The total electron content of the solar plasma along the line of sight is calculated by removing effects from mechanical and ionospheric noises. The spectral index was determined as which is in agreement with Kolmogorov's turbulence. The theoretical models are consistent with observations at lower solar elongations however at higher solar elongation ($ ]]>160 deg) we see the observed values to be higher. This can be caused when the uplink and downlink signals are positively correlated as a result of passing through identical plasma sheets.
  •  
8.
  • Belotelov, V. I., et al. (författare)
  • Modern Magnetophotonic Materials and their Applications : introduction to special issue
  • 2022
  • Ingår i: Optical Materials Express. - : Optica Publishing Group. - 2159-3930 .- 2159-3930. ; 12:5, s. 2087-2089
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Magneto-optics was established almost two centuries ago by M. Faraday, who discovered the influence of magnetic field on light polarization [Diary, 1845]. We would like to present this special issue dedicated to the state-of-art in magnetophotonic materials and their applications. 
  •  
9.
  • Brown, Keith A., et al. (författare)
  • Machine Learning in Nanoscience : Big Data at Small Scales
  • 2019
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 20:1, s. 2-10
  • Forskningsöversikt (refereegranskat)abstract
    • Recent advances in machine learning (ML) offer new tools to extract new insights from large data sets and to acquire small data sets more effectively. Researchers in nanoscience are experimenting with these tools to tackle challenges in many fields. In addition to ML's advancement of nanoscience, nanoscience provides the foundation for neuromorphic computing hardware to expand the implementation of ML algorithms. In this Mini Review, we highlight some recent efforts to connect the ML and nanoscience communities by focusing on three types of interaction: (1) using ML to analyze and extract new insights from large nanoscience data sets, (2) applying ML to accelerate material discovery, including the use of active learning to guide experimental design, and (3) the nanoscience of memristive devices to realize hardware tailored for ML. We conclude with a discussion of challenges and opportunities for future interactions between nanoscience and ML researchers.
  •  
10.
  • Lobet, Michael, et al. (författare)
  • New horizons in near-zero refractive index photonics and hyperbolic metamaterials
  • 2023
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 10:11, s. 3805-3820
  • Tidskriftsartikel (refereegranskat)abstract
    • The engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light-matter interactions. This Perspective aims at providing an overview of the state of the art and the challenges in emerging research areas where the use of near-zero refractive index and hyperbolic metamaterials is pivotal, in particular, light and thermal emission, nonlinear optics, sensing applications, and time-varying photonics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy