SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(MacDougall M. G.) "

Sökning: WFRF:(MacDougall M. G.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Mallorquin, M., et al. (författare)
  • TOI-1801 b: A temperate mini-Neptune around a young M0.5 dwarf
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery, mass, and radius determination of TOI-1801 b, a temperate mini-Neptune around a young M dwarf. TOI-1801 b was observed in TESS sectors 22 and 49, and the alert that this was a TESS planet candidate with a period of 21.3 days went out in April 2020. However, ground-based follow-up observations, including seeing-limited photometry in and outside transit together with precise radial velocity (RV) measurements with CARMENES and HIRES revealed that the true period of the planet is 10.6 days. These observations also allowed us to retrieve a mass of 5.74 +/- 1.46 M-circle plus, which together with a radius of 2.08 +/- 0.12 R-circle plus, means that TOI-1801 b is most probably composed of water and rock, with an upper limit of 2% by mass of H-2 in its atmosphere. The stellar rotation period of 16 days is readily detectable in our RV time series and in the ground-based photometry. We derived a likely age of 600-800 Myr for the parent star TOI-1801, which means that TOI-1801 b is the least massive young mini-Neptune with precise mass and radius determinations. Our results suggest that if TOI-1801 b had a larger atmosphere in the past, it must have been removed by some evolutionary mechanism on timescales shorter than 1 Gyr.
  •  
3.
  • Koven, C. D., et al. (författare)
  • A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback
  • 2015
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 373:2054
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (gamma sensitivity) of -14 to -19 PgC degrees C-1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.
  •  
4.
  • Turtelboom,, et al. (författare)
  • The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI-1246
  • 2022
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 163:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiplanet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V = 11.6, K = 9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31, 5.90, 18.66, and 37.92 days. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97 +/- 0.06 R (circle plus), 2.47 +/- 0.08 R (circle plus), 3.46 +/- 0.09 R (circle plus), and 3.72 +/- 0.16 R (circle plus)) and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1 +/- 1.1 M (circle plus), 8.8 +/- 1.2 M (circle plus), 5.3 +/- 1.7 M (circle plus), and 14.8 +/- 2.3 M (circle plus)). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (P (e)/P ( d ) = 2.03) and exhibit transit-timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only five systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70 +/- 0.24 to 3.21 +/- 0.44 g cm(-3), implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 +/- 3.6 M (circle plus). This planet candidate is exterior to TOI-1246 e, with a candidate period of 93.8 days, and we discuss the implications if it is confirmed to be planetary in nature.
  •  
5.
  •  
6.
  • Samra, K, et al. (författare)
  • Neuropsychiatric symptoms in genetic frontotemporal dementia: developing a new module for Clinical Rating Scales
  • 2023
  • Ingår i: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 94:5, s. 357-368
  • Tidskriftsartikel (refereegranskat)abstract
    • Current clinical rating scales in frontotemporal dementia (FTD) often do not incorporate neuropsychiatric features and may therefore inadequately measure disease stage.Methods832 participants from the Genetic FTD Initiative (GENFI) were recruited: 522 mutation carriers and 310 mutation-negative controls. The standardised GENFI clinical questionnaire assessed the frequency and severity of 14 neuropsychiatric symptoms: visual, auditory, and tactile hallucinations, delusions, depression, anxiety, irritability/lability, agitation/aggression, euphoria/elation, aberrant motor behaviour, hypersexuality, hyperreligiosity, impaired sleep, and altered sense of humour. A principal component analysis (PCA) was performed to identify key groupings of neuropsychiatric and behavioural items in order to create a new neuropsychiatric module that could be used as an addition to the Clinical Dementia Rating (CDR) plus National Alzheimer’s Coordinating Center Behaviour and Language Domains (NACC FTLD) rating scale.ResultsOverall, 46.4% of mutation carriers had neuropsychiatric symptoms (51.6%C9orf72, 40.8%GRN, 46.6%MAPT) compared with 24.5% of controls. Anxiety and depression were the most common in all genetic groups but fluctuated longitudinally and loaded separately in the PCA. Hallucinations and delusions loaded together, with the remaining neuropsychiatric symptoms loading with the core behavioural features of FTD. These results suggest using a single ‘psychosis’ neuropsychiatric module consisting of hallucinations and delusions. Adding this to the CDR plus NACC FTLD, called the CDR plus NACC FTLD-N, leads to a number of participants being scored more severely, including those who were previously considered asymptomatic now being scored as prodromal.ConclusionsNeuropsychiatric symptoms occur in mutation carriers at all disease stages across all three genetic groups. However, only psychosis features provided additional staging benefit to the CDR plus NACC FTLD. Inclusion of these features brings us closer to optimising the rating scale for use in trials.
  •  
7.
  • Beard, Corey, et al. (författare)
  • The TESS-Keck Survey. XVII. Precise Mass Measurements in a Young, High-multiplicity Transiting Planet System Using Radial Velocities and Transit Timing Variations
  • 2024
  • Ingår i: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 167:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a radial velocity (RV) analysis of TOI-1136, a bright Transiting Exoplanet Survey Satellite (TESS) system with six confirmed transiting planets, and a seventh single-transiting planet candidate. All planets in the system are amenable to transmission spectroscopy, making TOI-1136 one of the best targets for intra-system comparison of exoplanet atmospheres. TOI-1136 is young (similar to 700 Myr), and the system exhibits transit timing variations (TTVs). The youth of the system contributes to high stellar variability on the order of 50 m s-1, much larger than the likely RV amplitude of any of the transiting exoplanets. Utilizing 359 High Resolution Echelle Spectrometer and Automated Planet Finder RVs collected as part of the TESS-Keck Survey, and 51 High-Accuracy Radial velocity Planetary Searcher North RVs, we experiment with a joint TTV-RV fit. With seven possible transiting planets, TTVs, more than 400 RVs, and a stellar activity model, we posit that we may be presenting the most complex mass recovery of an exoplanet system in the literature to date. By combining TTVs and RVs, we minimized Gaussian process overfitting and retrieved new masses for this system: (m b-g = 3.50-0.7+0.8 , 6.32-1.3+1.1 , 8.35-1.6+1.8 , 6.07-1.01+1.09 , 9.7-3.7+3.9 , 5.6-3.2+4.1 M circle plus). We are unable to significantly detect the mass of the seventh planet candidate in the RVs, but we are able to loosely constrain a possible orbital period near 80 days. Future TESS observations might confirm the existence of a seventh planet in the system, better constrain the masses and orbital properties of the known exoplanets, and generally shine light on this scientifically interesting system.
  •  
8.
  •  
9.
  •  
10.
  • Hon, Marc, et al. (författare)
  • A close-in giant planet escapes engulfment by its star
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 618:7967, s. 917-920
  • Tidskriftsartikel (refereegranskat)abstract
    • When main-sequence stars expand into red giants, they are expected to engulf close-in planets(1-5). Until now, the absence of planets with short orbital periods around post-expansion, core-helium-burning red giants(6-8) has been interpreted as evidence that short-period planets around Sun-like stars do not survive the giant expansion phase of their host stars(9). Here we present the discovery that the giant planet 8 Ursae Minoris b(10) orbits a core-helium-burning red giant. At a distance of only 0.5 au from its host star, the planet would have been engulfed by its host star, which is predicted by standard single-star evolution to have previously expanded to a radius of 0.7 au. Given the brief lifetime of helium-burning giants, the nearly circular orbit of the planet is challenging to reconcile with scenarios in which the planet survives by having a distant orbit initially. Instead, the planet may have avoided engulfment through a stellar merger that either altered the evolution of the host star or produced 8 Ursae Minoris b as a second-generation planet(11). This system shows that core-helium-burning red giants can harbour close planets and provides evidence for the role of non-canonical stellar evolution in the extended survival of late-stage exoplanetary systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy