SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maccarana Marco) "

Sökning: WFRF:(Maccarana Marco)

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vajro, Pietro, et al. (författare)
  • Three unreported cases of TMEM199-CDG, a rare genetic liver disease with abnormal glycosylation
  • 2018
  • Ingår i: Orphanet Journal of Rare Diseases. - : Springer Science and Business Media LLC. - 1750-1172. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: TMEM199 deficiency was recently shown in four patients to cause liver disease with steatosis, elevated serum transaminases, cholesterol and alkaline phosphatase and abnormal protein glycosylation. There is no information on the long-term outcome in this disorder. Results: We here present three novel patients with TMEM199-CDG. All three patients carried the same set of mutations (c.13-14delTT (p.Ser4Serfs∗30) and c.92G > C (p.Arg31Pro), despite only two were related (siblings). One mutation (c.92G > C) was described previously whereas the other was deemed pathogenic due to its early frameshift. Western Blot analysis confirmed a reduced level of TMEM199 protein in patient fibroblasts and all patients showed a similar glycosylation defect. The patients presented with a very similar clinical and biochemical phenotype to the initial publication, confirming that TMEM199-CDG is a non-encephalopathic liver disorder. Two of the patients were clinically assessed over two decades without deterioration. Conclusion: A rising number of disorders affecting Golgi homeostasis have been published over the last few years. A hallmark finding is deficiency in protein glycosylation, both in N- and O-linked types. Most of these disorders have signs of both liver and brain involvement. However, the present and the four previously reported patients do not show encephalopathy but a chronic, non-progressive (over decades) liver disease with hypertransaminasemia and steatosis. This information is crucial for the patient/families and clinician at diagnosis, as it distinguishes it from other Golgi homeostasis disorders, in having a much more favorable course.
  •  
2.
  • Acosta, Helena, et al. (författare)
  • The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation.
  • 2015
  • Ingår i: Development: For advances in developmental biology and stem cells. - : The Company of Biologists. - 1477-9129. ; 142:6, s. 1146-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • Germ layer formation and primary axis development rely on Fibroblast growth factors (FGFs). In Xenopus, the secreted serine protease HtrA1 induces mesoderm and posterior trunk/tail structures by facilitating the spread of FGF signals. Here, we show that the serpin Protease nexin-1 (PN1) is transcriptionally activated by FGF signals, suppresses mesoderm and promotes head development in mRNA-injected embryos. An antisense morpholino oligonucleotide against PN1 has the opposite effect and inhibits ectodermal fate. However, ectoderm and anterior head structures can be restored in PN1-depleted embryos when HtrA1 and FGF receptor activities are diminished, indicating that FGF signals negatively regulate their formation. We show that PN1 binds to and inhibits HtrA1, prevents degradation of the proteoglycan Syndecan 4 and restricts paracrine FGF/Erk signaling. Our data suggest that PN1 is a negative-feedback regulator of FGF signaling and has important roles in ectoderm and head development.
  •  
3.
  • Akatsu, Chizuru, et al. (författare)
  • Dermatan sulfate epimerase 2 is the predominant isozyme in the formation of the chondroitin sulfate/dermatan sulfate hybrid structure in postnatal developing mouse brain
  • 2011
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423 .- 0959-6658. ; 21:5, s. 565-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondroitin sulfate (CS) and dermatan sulfate (DS) are expressed in significant amounts in the brain and play important roles in the development of the central nervous system in mammals. CS and DS structures are often found in a single CS/DS hybrid chain. The L-iduronic acid (IdoA)-containing domain, which defines a DS-type domain, appears key to the biological functions of the CS/DS hybrid chain. In this study, to clarify the distribution of the DS-type structure in the brain during development, the expression patterns of DS epimerase 1 (DS-epi1) and DS-epi2, both of which convert D-glucuronic acid into IdoA, were investigated by in situ hybridization. DS-epi2 was ubiquitously expressed in the developing brain after birth, whereas the expression of DS-epi1 was faint and obscure at all developmental stages. Quantitative real-time polymerase chain reaction revealed the expression of DS-epi2 to be higher than that of DS-epi1 throughout development, suggesting that DS-epi2 but not DS-epi1 is mostly expressed in the brain and plays key roles in the epimerization of CS/DS during its biosynthesis. Moreover, an analysis of the disaccharides of CS/DS demonstrated significant amounts of IdoA-containing iD units [IdoA(2S)-GalNAc(6S)] and iB units [IdoA(2S)-GalNAc(4S)], where 2S, 4S and 6S stand for 2-O-, 4-O- and 6-O-sulfate, respectively, in every region of the brain examined. The proportion of these units in cerebellar CS/DS was greatly altered during postnatal development. These results suggest that the IdoA-containing structures in the developing brain are mainly produced by the actions of DS-epi2 and play crucial roles in postnatal development.
  •  
4.
  • Barrueta Tenhunen, Annelie, et al. (författare)
  • Fluid restrictive resuscitation with high molecular weight hyaluronan infusion in early peritonitis sepsis
  • 2023
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Nature. - 2197-425X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis is a condition with high morbidity and mortality. Prompt recognition and initiation of treatment is essential. Despite forming an integral part of sepsis management, fluid resuscitation may also lead to volume overload, which in turn is associated with increased mortality. The optimal fluid strategy in sepsis resuscitation is yet to be defined. Hyaluronan, an endogenous glycosaminoglycan with high affinity to water is an important constituent of the endothelial glycocalyx. We hypothesized that exogenously administered hyaluronan would counteract intravascular volume depletion and contribute to endothelial glycocalyx integrity in a fluid restrictive model of peritonitis. In a prospective, blinded model of porcine peritonitis sepsis, we randomized animals to intervention with hyaluronan (n = 8) or 0.9% saline (n = 8). The animals received an infusion of 0.1% hyaluronan 6 ml/kg/h, or the same volume of saline, during the first 2 h of peritonitis. Stroke volume variation and hemoconcentration were comparable in the two groups throughout the experiment. Cardiac output was higher in the intervention group during the infusion of hyaluronan (3.2 ± 0.5 l/min in intervention group vs 2.7 ± 0.2 l/min in the control group) (p = 0.039). The increase in lactate was more pronounced in the intervention group (3.2 ± 1.0 mmol/l in the intervention group and 1.7 ± 0.7 mmol/l in the control group) at the end of the experiment (p < 0.001). Concentrations of surrogate markers of glycocalyx damage; syndecan 1 (0.6 ± 0.2 ng/ml vs 0.5 ± 0.2 ng/ml, p = 0.292), heparan sulphate (1.23 ± 0.2 vs 1.4 ± 0.3 ng/ml, p = 0.211) and vascular adhesion protein 1 (7.0 ± 4.1 vs 8.2 ± 2.3 ng/ml, p = 0.492) were comparable in the two groups at the end of the experiment. In conclusion, hyaluronan did not counteract intravascular volume depletion in early peritonitis sepsis. However, this finding is hampered by the short observation period and a beneficial effect of HMW-HA in peritonitis sepsis cannot be discarded based on the results of the present study.
  •  
5.
  • Bartolini, Barbara, et al. (författare)
  • Iduronic Acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells.
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS) proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA), catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to delayed ability to re-populate wounded areas due to loss of directional persistence of migration. DS-epi1-/- aortic smooth muscle cells, however, had not lost the general property of migration showing even increased speed of movement compared to wild type cells. Where the cell membrane adheres to the substratum, stress fibers were denser whereas focal adhesion sites were fewer. Total cellular expression of focal adhesion kinase (FAK) and phospho-FAK (pFAK) was decreased in mutant cells compared to control cells. As many pathological conditions are dependent on migration, modulation of IdoA content may point to therapeutic strategies for diseases such as cancer and atherosclerosis.
  •  
6.
  • Bartolini, Barbara, et al. (författare)
  • Mouse development is not obviously affected by the absence of dermatan sulfate epimerase 2 in spite of a modified brain dermatan sulfate composition.
  • 2012
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423 .- 0959-6658. ; 22:7, s. 1007-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • Dermatan sulfate epimerase 2 (DS-epi2), together with its homologue DS-epi1, transform glucuronic acid into iduronic acid in dermatan sulfate polysaccharide chains. Iduronic acid gives dermatan sulfate increased chain flexibility and promotes protein binding. DS-epi2 is ubiquitously expressed and is the predominant epimerase in brain. Here we report the generation and initial characterization of DS-epi2 null mice. DS-epi2 deficient mice showed no anatomical, histological or morphological abnormalities. The body weights and lengths of mutated and wild-type littermates were indistinguishable. They were fertile and had a normal lifespan. Chondroitin/dermatan sulfate (CS/DS) isolated from newborn mutated mouse brains had a 38% reduction in iduronic acid compared to wild type littermates and compositional analysis revealed a decrease of 4-O-sulfate and an increase of 6-O-sulfate containing structures. Despite the reduction in iduronic acid, adult DS-epi2-/- brain showed normal extracellular matrix features by immunohistological stainings. We conclude that DS-epi1 compensates in vivo for the loss of DS-epi2.. These results extend previous findings of functional redundancy of brain extracellular matrix components.
  •  
7.
  • Dick, Gunnar, et al. (författare)
  • PAPST1 regulates sulfation of heparan sulfate proteoglycans in epithelial MDCK II cells.
  • 2015
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423 .- 0959-6658. ; 25:1, s. 30-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteoglycan (PG) sulfation depends on activated nucleotide sulfate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Transporters in the Golgi membrane translocate PAPS from the cytoplasm into the organelle lumen where PG sulfation occurs. Silencing of PAPS transporter (PAPST) 1 in epithelial MDCK cells reduced PAPS uptake into Golgi vesicles. Surprisingly, at the same time sulfation of heparan sulfate (HS) was stimulated. The effect was pathway specific in polarized epithelial cells. Basolaterally secreted PGs displayed an altered HS sulfation pattern and increased growth factor binding capacity. In contrast, the sulfation pattern of apically secreted PGs was unchanged while the secretion was reduced. Regulation of PAPST1 allows epithelial cells to prioritize between PG sulfation in the apical and basolateral secretory routes at the level of the Golgi apparatus. This provides sulfation patterns that ensure PG functions at the extracellular level, such as growth factor binding.
  •  
8.
  • Doherty, Gareth G., et al. (författare)
  • Synthesis of Uronic Acid 1-Azasugars as Putative Inhibitors of α-Iduronidase, β-Glucuronidase and Heparanase
  • 2023
  • Ingår i: ChemBioChem. - : Wiley-VCH Verlagsgesellschaft. - 1439-4227 .- 1439-7633. ; 24:4
  • Tidskriftsartikel (refereegranskat)abstract
    • 1-Azasugar analogues of l-iduronic acid (l-IdoA) and d-glucuronic acid (d-GlcA) and their corresponding enantiomers have been synthesized as potential pharmacological chaperones for mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by mutations in the gene encoding α-iduronidase (IDUA). The compounds were efficiently synthesized in nine or ten steps from d- or l-arabinose, and the structures were confirmed by X-ray crystallographic analysis of key intermediates. All compounds were inactive against IDUA, although l-IdoA-configured 8 moderately inhibited β-glucuronidase (β-GLU). The d-GlcA-configured 9 was a potent inhibitor of β-GLU and a moderate inhibitor of the endo-β-glucuronidase heparanase. Co-crystallization of 9 with heparanase revealed that the endocyclic nitrogen of 9 forms close interactions with both the catalytic acid and catalytic nucleophile.
  •  
9.
  • Ghiselli, Giancarlo, et al. (författare)
  • Drugs affecting glycosaminoglycan metabolism
  • 2016
  • Ingår i: Drug Discovery Today. - : Elsevier BV. - 1359-6446. ; 21:7, s. 1162-1169
  • Forskningsöversikt (refereegranskat)abstract
    • Glycosaminoglycans (GAGs) are charged polysaccharides ubiquitously present at the cell surface and in the extracellular matrix. GAGs are crucial for cellular homeostasis, and their metabolism is altered during pathological processes. However, little consideration has been given to the regulation of the GAG milieu through pharmacological interventions. In this review, we provide a classification of small molecules affecting GAG metabolism based on their mechanism of action. Furthermore, we present evidence to show that clinically approved drugs affect GAG metabolism and that this could contribute to their therapeutic benefit.
  •  
10.
  • Gouignard, Nadège, et al. (författare)
  • Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans are abundant on the cell surface and in the extracellular matrix and have important functions in matrix structure, cell-matrix interaction and signaling. The DS epimerases 1 and 2, encoded by Dse and Dsel, respectively, convert CS to a CS/DS hybrid chain, which is structurally and conformationally richer than CS, favouring interaction with matrix proteins and growth factors. We recently showed that Xenopus Dse is essential for the migration of neural crest cells by allowing cell surface CS/DS proteoglycans to adhere to fibronectin. Here we investigate the expression of Dse and Dsel in Xenopus embryos. We show that both genes are maternally expressed and exhibit partially overlapping activity in the eyes, brain, trigeminal ganglia, neural crest, adenohypophysis, sclerotome, and dorsal endoderm. Dse is specifically expressed in the epidermis, anterior surface ectoderm, spinal nerves, notochord and dermatome, whereas Dsel mRNA alone is transcribed in the spinal cord, epibranchial ganglia, prechordal mesendoderm and myotome. The expression of the two genes coincides with sites of cell differentiation in the epidermis and neural tissue. Several expression domains can be linked to previously reported phenotypes of knockout mice and clinical manifestations, such as the Musculocontractural Ehlers-Danlos syndrome and psychiatric disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy