SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Maekawa Y.) "

Search: WFRF:(Maekawa Y.)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abe, K., et al. (author)
  • Neutron tagging following atmospheric neutrino events in a water Cherenkov detector
  • 2022
  • In: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 17:10
  • Journal article (peer-reviewed)abstract
    • We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 mu s.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • de Hoon, M, et al. (author)
  • Deep sequencing of short capped RNAs reveals novel families of noncoding RNAs
  • 2022
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 32:9, s. 1727-1735
  • Journal article (peer-reviewed)abstract
    • In eukaryotes, capped RNAs include long transcripts such as messenger RNAs and long noncoding RNAs, as well as shorter transcripts such as spliceosomal RNAs, small nucleolar RNAs, and enhancer RNAs. Long capped transcripts can be profiled using cap analysis gene expression (CAGE) sequencing and other methods. Here, we describe a sequencing library preparation protocol for short capped RNAs, apply it to a differentiation time course of the human cell line THP-1, and systematically compare the landscape of short capped RNAs to that of long capped RNAs. Transcription initiation peaks associated with genes in the sense direction have a strong preference to produce either long or short capped RNAs, with one out of six peaks detected in the short capped RNA libraries only. Gene-associated short capped RNAs have highly specific 3′ ends, typically overlapping splice sites. Enhancers also preferentially generate either short or long capped RNAs, with 10% of enhancers observed in the short capped RNA libraries only. Enhancers producing either short or long capped RNAs show enrichment for GWAS-associated disease SNPs. We conclude that deep sequencing of short capped RNAs reveals new families of noncoding RNAs and elucidates the diversity of transcripts generated at known and novel promoters and enhancers.
  •  
8.
  • Maekawa, S., et al. (author)
  • BMP Gene-Immobilization to Dental Implants Enhances Bone Regeneration
  • 2022
  • In: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; 9:22
  • Journal article (peer-reviewed)abstract
    • For individuals who have experienced tooth loss, dental implants are an important treatment option for oral reconstruction. For these patients, alveolar bone augmentation and acceleration of osseointegration optimize implant stability. Traditional oral surgery often requires invasive procedures, which can result in prolonged treatment time and associated morbidity. It has been previously shown that chemical vapor deposition (CVD) polymerization of functionalized [2.2]paracyclophanes can be used to anchor gene encoding vectors onto biomaterial surfaces and local delivery of a bone morphogenetic protein (BMP)-encoding vector can increase alveolar bone volume and density in vivo. This study is the first to combine the use of CVD technology and BMP gene delivery on titanium for the promotion of bone regeneration and bone to implant contact in vivo. BMP-7 tethered to titanium surface enhances osteoblast cell differentiation and alkaline phosphatase activity in vitro and increases alveolar bone regeneration and % bone to implant contact similar to using high doses of exogenously applied BMP-7 in vivo. The use of this innovative gene delivery strategy on implant surfaces offers an alternative treatment option for targeted alveolar bone reconstruction.
  •  
9.
  • Annadi, A., et al. (author)
  • Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface
  • 2013
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 4
  • Journal article (peer-reviewed)abstract
    • The observation of a high-mobility two-dimensional electron gas between two insulating complex oxides, especially LaAlO3/SrTiO3, has enhanced the potential of oxides for electronics. The occurrence of this conductivity is believed to be driven by polarization discontinuity, leading to an electronic reconstruction. In this scenario, the crystal orientation has an important role and no conductivity would be expected, for example, for the interface between LaAlO3 and (110)-oriented SrTiO3, which should not have a polarization discontinuity. Here we report the observation of unexpected conductivity at the LaAlO3/SrTiO3 interface prepared on (110)-oriented SrTiO3, with a LaAlO3-layer thickness-dependent metal-insulator transition. Density functional theory calculation reveals that electronic reconstruction, and thus conductivity, is still possible at this (110) interface by considering the energetically favourable (110) interface structure, that is, buckled TiO2/LaO, in which the polarization discontinuity is still present. The conductivity was further found to be strongly anisotropic along the different crystallographic directions with potential for anisotropic superconductivity and magnetism, leading to possible new physics and applications.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view