SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maezawa Yoshiro) "

Sökning: WFRF:(Maezawa Yoshiro)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maezawa, Yoshiro, et al. (författare)
  • Loss of the Podocyte-Expressed Transcription Factor Tcf21/Pod1 Results in Podocyte Differentiation Defects and FSGS
  • 2014
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 25:11, s. 2459-2470
  • Tidskriftsartikel (refereegranskat)abstract
    • Podocytes are terminally differentiated cells with an elaborate cytoskeleton and are critical components of the glomerular barrier. We identified a bHLH transcription factor, Tcf21, that is highly expressed in developing and mature podocytes. Because conventional Tcf21 knockout mice die in the perinatal period with major cardiopulmonary defects, we generated a conditional Tcf21 knockout mouse to explore the role of this transcription factor in podocytes in vivo. Tcf21 was deleted from podocytes and podocyte progenitors using podocin-cre (podTcf21) and wnt4-cre (wnt4creTcf21) driver strains, respectively. Loss of Tcf21 from capillary-loop stage podocytes (podTcf21) results in simplified glomeruli with a decreased number of endothelial and mesangial cells. By 5 weeks of age, 40% of podTcf21 mice develop massive proteinuria and lesions similar to FSGS. Notably, the remaining 60% of mice do not develop proteinuria even when aged to 8 months. By contrast, earlier deletion of Tcf21 from podocyte precursors (wnt4creTcf21) results in a profound developmental arrest of podocyte differentiation and renal failure in 100% of mice during the perinatal period. Taken together, our results demonstrate a critical role for Tcf21 in the differentiation and maintenance of podocytes. Identification of direct targets of this transcription factor may provide new therapeutic avenues for proteinuric renal disease, including FSGS.
  •  
2.
  • Shoda, Jumpei, et al. (författare)
  • Semaphorin 3G exacerbates joint inflammation through the accumulation and proliferation of macrophages in the synovium
  • 2022
  • Ingår i: Arthritis Research & Therapy. - : BioMed Central (BMC). - 1478-6354 .- 1478-6362. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Methotrexate (MTX) is an anchor drug for the treatment of rheumatoid arthritis (RA). However, the precise mechanisms by which MTX stalls RA progression and alleviates the ensuing disease effects remain unknown. The aim of the present study was to identify novel therapeutic target molecules, the expression patterns of which are affected by MTX in patients with RA. Methods CD4(+) T cells from 28 treatment-naive patients with RA before and 3 months after the initiation of MTX treatment were subjected to DNA microarray analyses. The expression levels of semaphorin 3G, a differentially expressed gene, and its receptor, neuropilin-2, were evaluated in the RA synovium and collagen-induced arthritis synovium. Collagen-induced arthritis and collagen antibody-induced arthritis were induced in semaphorin3G-deficient mice and control mice, and the clinical score, histological score, and serum cytokines were assessed. The migration and proliferation of semaphorin 3G-stimulated bone marrow-derived macrophages were analyzed in vitro. The effect of local semaphorin 3G administration on the clinical score and number of infiltrating macrophages during collagen antibody-induced arthritis was evaluated. Results Semaphorin 3G expression in CD4(+) T cells was downregulated by MTX treatment in RA patients. It was determined that semaphorin 3G is expressed in RA but not in the osteoarthritis synovium; its receptor neuropilin-2 is primarily expressed on activated macrophages. Semaphorin3G deficiency ameliorated collagen-induced arthritis and collagen antibody-induced arthritis. Semaphorin 3G stimulation enhanced the migration and proliferation of bone marrow-derived macrophages. Local administration of semaphorin 3G deteriorated collagen antibody-induced arthritis and increased the number of infiltrating macrophages. Conclusions Upregulation of semaphorin 3G in the RA synovium is a novel mechanism that exacerbates joint inflammation, leading to further deterioration, through macrophage accumulation.
  •  
3.
  • Ishikawa, Takahiro, et al. (författare)
  • A novel podocyte protein, R3h domain containing-like, inhibits TGF-β-induced p38 MAPK and regulates the structure of podocytes and glomerular basement membrane
  • 2021
  • Ingår i: Journal of Molecular Medicine. - : Springer Science and Business Media LLC. - 0946-2716 .- 1432-1440. ; 99:6, s. 859-876
  • Tidskriftsartikel (refereegranskat)abstract
    • Not only in kidney glomerular physiological function but also glomerular pathology especially in diabetic condition, glomerular podocytes play pivotal roles. Therefore, it is important to increase our knowledge about the genes and proteins expressed in podocytes. Recently, we have identified a novel podocyte-expressed gene, R3h domain containing-like (R3hdml) and analyzed its function in vivo as well as in vitro. Transforming growth factor-β (TGF-β) signaling regulated the expression of R3hdml. And R3hdml inhibited p38 mitogen-activated protein kinase phosphorylation, which was induced by TGF-β, leading to the amelioration of podocyte apoptosis. Furthermore, a lack of R3hdml in mice significantly worsened glomerular function in streptozotocin (STZ)-induced diabetes, while overexpression of R3hdml ameliorated albuminuria in STZ-induced diabetes. Our results surmise that the functional analyses of R3hdml may lead to the development of novel therapeutic strategies for diabetic nephropathy in the future.
  •  
4.
  • Sakamoto, Kenichi, et al. (författare)
  • R3hdml regulates satellite cell proliferation and differentiation
  • 2019
  • Ingår i: EMBO Reports. - : John Wiley & Sons. - 1469-221X .- 1469-3178. ; 20:11
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we identified a previously uncharacterized skeletal satellite cell-secreted protein, R3h domain containing-like (R3hdml). Expression of R3hdml increases during skeletal muscle development and differentiation in mice. Body weight and skeletal muscle mass of R3hdml knockout (KO) mice are lower compared to control mice. Expression levels of cell cycle-related markers, phosphorylation of Akt, and expression of insulin-like growth factor within the skeletal muscle are reduced in R3hdml KO mice compared to control mice. Expression of R3hdml increases during muscle regeneration in response to cardiotoxin (CTX)-induced muscle injury. Recovery of handgrip strength after CTX injection was significantly impaired in R3hdml KO mice, which is rescued by R3hdml. Our results indicate that R3hdml is required for skeletal muscle development, regeneration, and, in particular, satellite cell proliferation and differentiation.
  •  
5.
  • Sivaskandarajah, Gavasker A, et al. (författare)
  • Vegfa protects the glomerular microvasculature in diabetes
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 61:11, s. 2958-2966
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor A (VEGFA) expression is increased in glomeruli in the context of diabetes. Here, we tested the hypothesis that this upregulation of VEGFA protects the glomerular microvasculature in diabetes and that therefore inhibition of VEGFA will accelerate nephropathy. To determine the role of glomerular Vegfa in the development and progression of diabetic nephropathy, we used an inducible Cre-loxP gene-targeting system that enabled genetic deletion of Vegfa selectively from glomerular podocytes of wild-type or diabetic mice. Type 1 diabetes was induced in mice using streptozotocin (STZ). We then assessed the extent of glomerular dysfunction by measuring proteinuria, glomerular pathology, and glomerular cell apoptosis. Vegfa expression increased in podocytes in the STZ model of diabetes. After 7 weeks of diabetes, diabetic mice lacking Vegfa in podocytes exhibited significantly greater proteinuria with profound glomerular scarring and increased apoptosis compared with control mice with diabetes or Vegfa deletion without diabetes. Reduced local production of glomerular Vegfa in a mouse model of type 1 diabetes promotes endothelial injury accelerating the progression of glomerular injury. These results suggest that upregulation of VEGFA in diabetic kidneys protects the microvasculature from injury and that reduction of VEGFA in diabetes may be harmful.
  •  
6.
  • Welsh, Gavin I, et al. (författare)
  • Insulin signaling to the glomerular podocyte is critical for normal kidney function
  • 2010
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 12:4, s. 329-340
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic nephropathy (DN) is the leading cause of renal failure in the world. It is characterized by albuminuria and abnormal glomerular function and is considered a hyperglycemic "microvascular" complication of diabetes, implying a primary defect in the endothelium. However, we have previously shown that human podocytes have robust responses to insulin. To determine whether insulin signaling in podocytes affects glomerular function in vivo, we generated mice with specific deletion of the insulin receptor from their podocytes. These animals develop significant albuminuria together with histological features that recapitulate DN, but in a normoglycemic environment. Examination of "normal" insulin-responsive podocytes in vivo and in vitro demonstrates that insulin signals through the MAPK and PI3K pathways via the insulin receptor and directly remodels the actin cytoskeleton of this cell. Collectively, this work reveals the critical importance of podocyte insulin sensitivity for kidney function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy