SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Magnus Fridrik Professor) "

Sökning: WFRF:(Magnus Fridrik Professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • George, Sebastian, 1990- (författare)
  • Amorphous Magnetic Materials : A Versatile Foundation for Tomorrow’s Applications
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amorphous magnetic materials exhibit a number of key differentiating properties with respect to crystalline magnets. In some cases, the differences may simply be in the values of macroscopic properties such as saturation magnetization, coercivity, Curie temperature, and electrical conductivity. Other cases are more fundamental, such as the possibility for many amorphous alloys to be produced with nearly arbitrary composition, something that is not always possible in crystal structures that may only be stable for certain specific compositions.Fundamentally, these properties arise due to the disordered arrangement of atoms in amorphous materials. However, this structure is challenging to probe and characterize, either experimentally or theoretically. A significant contribution of this thesis is the development of a new approach for studying the local atomic structure of amorphous materials, specifically amorphous SmCo and FeZr alloys. The strategy combines extended x-ray absorption spectroscopy (EXAFS) measurements with stochastic quenching (SQ) simulations in a way that provides more information than either method can offer alone. Additionally, this approach offers the potential for identifying any shortcomings in the theoretical models obtained via SQ.Having an accurate model of the atomic arrangement is not, however, a prerequisite for developing technical applications of amorphous magnetic materials. For that, it is sufficient to quantify those macroscopic properties that are relevant for a given application. Such is the value of the magnetic characterization of amorphous TbCo and CoFeZr alloy thin films presented here. Both investigations used methods such as vibrating sample magnetometry (VSM) and magneto-optic Kerr effect (MOKE) measurements to highlight the high tunability of the magnetic properties in these materials, which can be achieved simply by changing the chemical composition.The final portion of this thesis examines what can be achieved by combining amorphous SmCo and TbCo alloys together in bilayer structures. This is a step away from the alloy characterization studies, as it focuses on how new properties can be realized when multiple materials are brought together. MOKE measurements were used to identify the conditions under which the bilayers spontaneously become magnetized parallel to the film plane versus when the TbCo magnetization begins to tilt out of the plane. Further investigation combining x-ray circular magnetic dichroism (XMCD) measurements and micromagnetic simulations provided a depth-resolved model of the magnetization throughout the bilayers in the presence of a broad range of external field strengths and directions. These models also showed that the local magnetization just above and just below the SmCo/TbCo interface can be aligned either parallel or antiparallel to one another simply by varying the TbCo composition. This discovery offers a novel method for controlling the magnetic behavior in these materials, and may well be useful for all-optical switching or spintronics applications where amorphous TbCo alloys have already drawn attention.
  •  
2.
  • Magnfält, Daniel (författare)
  • Nucleation and stress generation in thin films deposited with a pulsed energetic deposition flux
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents fundamental mechanisms of nucleation and early growth of and stress generation in thin polycrystalline metal films deposited using pulsed energetic deposition fluxes. The effects of a pulsed deposition flux and energetic bombardment on film nucleation was investigated using in situ stress measurements and in situ ellipsometry to determine the film thickness at which the films become continuous. Ag films where deposited using high power impulse magnetron sputtering (HiPIMS) in two series - one with constant low pulse power to minimize energetic bombardment while varying the pulse frequency and one with a constant pulse frequency while varying the pulse power, resulting in different amounts of energetic bombardment and different deposition rates - to separate the effects of a pulsed deposition flux and energetic bombardment. The thickness at which the film becomes continuous was found to decrease both with increasing pulse frequency and increasing pulse power. The effects of the increased energetic bombardment and deposition rate cannot be separated due to their coupling. Adatom lifetimes and the coalescence times for islands where calculated for different coverages and island sizes and compared to the time between pulses. It was found that the time between pulses was lower than the adatom lifetimes for certain conditions; this leads to an increase in the adatom density and therefore an increase of the nucleation density resulting in smaller thicknesses for the formation of continuous film. It was also found that the coalescence time for clusters becomes longer than the time between pulses, retarding the coalescence process; this leads to formation of long lived elongated clusters also resulting in a decrease of the thickness at which the films become continuous.Energetic bombardment during growth of Mo films using HiPIMS is found to result in large compressive stresses without the commonly observed defect induced associated lattice expansion seen when depositing films using energetic bombardment. This and a correlation between the magnitude of the compressive stress and the film density allow us to conclude that the compressive stress is generated by grain boundary densification. Two mechanisms leading to grain boundary densification and thus generation of compressive stresses are proposed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy