SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mahdi Taman) "

Sökning: WFRF:(Mahdi Taman)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buda, Pawel, et al. (författare)
  • Eukaryotic translation initiation factor 3 subunit e controls intracellular calcium homeostasis by regulation of cav1.2 surface expression.
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Inappropriate surface expression of voltage-gated Ca(2+)channels (CaV) in pancreatic ß-cells may contribute to the development of type 2 diabetes. First, failure to increase intracellular Ca(2+) concentrations at the sites of exocytosis impedes insulin release. Furthermore, excessive Ca(2+) influx may trigger cytotoxic effects. The regulation of surface expression of CaV channels in the pancreatic β-cells remains unknown. Here, we used real-time 3D confocal and TIRFM imaging, immunocytochemistry, cellular fractionation, immunoprecipitation and electrophysiology to study trafficking of L-type CaV1.2 channels upon β-cell stimulation. We found decreased surface expression of CaV1.2 and a corresponding reduction in L-type whole-cell Ca(2+) currents in insulin-secreting INS-1 832/13 cells upon protracted (15-30 min) stimulation. This internalization occurs by clathrin-dependent endocytosis and could be prevented by microtubule or dynamin inhibitors. eIF3e (Eukaryotic translation initiation factor 3 subunit E) is part of the protein translation initiation complex, but its effect on translation are modest and effects in ion channel trafficking have been suggested. The factor interacted with CaV1.2 and regulated CaV1.2 traffic bidirectionally. eIF3e silencing impaired CaV1.2 internalization, which resulted in an increased intracellular Ca(2+) load upon stimulation. These findings provide a mechanism for regulation of L-type CaV channel surface expression with consequences for β-cell calcium homeostasis, which will affect pancreatic β-cell function and insulin production.
  •  
2.
  • Mahdi, Taman (författare)
  • Mechanisms of defective insulin secretion in type 2 diabetes
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Defective insulin secretion from the pancreatic B-cells is a central feature in type 2 diabetes (T2D). There is a strong hereditary component in type T2D, but the underlying pathophysiology remains largely unknown. This thesis uses a combination of gene network analysis and cell-physiological techniques to explore the genetic and cellular basis for impaired insulin secretion in T2D. We found that genetic variants for type 2 diabetes near TCF7L2 and ADRA2A were associated with reduced glucose-induced insulin secretion. Moreover, susceptibility variants near ADRA2A, KCNJ11, KCNQ1, and TCF7L2 were associated with reduced depolarization-evoked insulin exocytosis. We combined our results to create a novel genetic risk score for B-cell dysfunction that includes aberrant granule docking, decreased Ca2+ sensitivity of exocytosis, and reduced insulin release. Individuals with a high risk score displayed an impaired response to intravenous glucose and deteriorating insulin secretion over time. To obtain a more global view of the pathophysiology of T2D we next analyzed gene expression from microarray data of human pancreatic islets. A group of coexpressed genes (module), enriched for interleukin-1-related genes, was associated with T2D and reduced insulin secretion. One of the module genes that was highly overexpressed in islets from T2D patients is SFRP4, which encodes secreted frizzled-related protein 4. SFRP4 expression correlated with inflammatory markers, and its release from islets was stimulated by interleukin-1B. Elevated systemic SFRP4 caused reduced glucose tolerance through decreased islet expression of Ca2+ channels and suppressed insulin exocytosis. SFRP4 thus provides the first molecular link between islet inflammation and impaired insulin secretion. Moreover, the protein was increased in serum from diabetic patients several years before the diagnosis, suggesting that SFRP4 could be a potential biomarker for islet dysfunction in T2D. We have also identified a gene co-expression module in human pancreatic islets that is enriched for genes with islet-specific open chromatin. In individuals with T2D this module displays an expression pattern that is reminiscent of a B-cell dedifferentiation profile. We have studied key transcription factors that may regulate this module. Taken together, the findings shed new light on the pathophysiology of T2D and show the potential of combining genetics, bioinformatics and cell-physiology to better understand complex polygenic diseases.
  •  
3.
  • Mahdi, Taman, et al. (författare)
  • Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes.
  • 2012
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 16:5, s. 625-633
  • Tidskriftsartikel (refereegranskat)abstract
    • A plethora of candidate genes have been identified for complex polygenic disorders, but the underlying disease mechanisms remain largely unknown. We explored the pathophysiology of type 2 diabetes (T2D) by analyzing global gene expression in human pancreatic islets. A group of coexpressed genes (module), enriched for interleukin-1-related genes, was associated with T2D and reduced insulin secretion. One of the module genes that was highly overexpressed in islets from T2D patients is SFRP4, which encodes secreted frizzled-related protein 4. SFRP4 expression correlated with inflammatory markers, and its release from islets was stimulated by interleukin-1β. Elevated systemic SFRP4 caused reduced glucose tolerance through decreased islet expression of Ca(2+) channels and suppressed insulin exocytosis. SFRP4 thus provides a link between islet inflammation and impaired insulin secretion. Moreover, the protein was increased in serum from T2D patients several years before the diagnosis, suggesting that SFRP4 could be a potential biomarker for islet dysfunction in T2D.
  •  
4.
  • Rosengren, Anders, et al. (författare)
  • Reduced Insulin Exocytosis in Human Pancreatic β-cells With Gene Variants Linked to Type 2 Diabetes.
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 61:7, s. 1726-1733
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features in relation to genetic risk profiles in diabetic and nondiabetic donors. Islets from donors with T2D exhibited impaired insulin secretion, which was more pronounced in lean than obese diabetic donors. We assessed the impact of 14 disease susceptibility variants on measures of glucose sensing, exocytosis, and structure. Variants near TCF7L2 and ADRA2A were associated with reduced glucose-induced insulin secretion, whereas susceptibility variants near ADRA2A, KCNJ11, KCNQ1, and TCF7L2 were associated with reduced depolarization-evoked insulin exocytosis. KCNQ1, ADRA2A, KCNJ11, HHEX/IDE, and SLC2A2 variants affected granule docking. We combined our results to create a novel genetic risk score for β-cell dysfunction that includes aberrant granule docking, decreased Ca(2+) sensitivity of exocytosis, and reduced insulin release. Individuals with a high risk score displayed an impaired response to intravenous glucose and deteriorating insulin secretion over time. Our results underscore the importance of defects in β-cell exocytosis in T2D and demonstrate the potential of cellular phenotypic characterization in the elucidation of complex genetic disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy