SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mahlapuu Margit 1972) "

Sökning: WFRF:(Mahlapuu Margit 1972)

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease.
  • 2020
  • Ingår i: JCI insight. - : American Society for Clinical Investigation. - 2379-3708. ; 5:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Further, we find that STK25 silencing in human kidney cells protects against lipid deposition as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.
  •  
2.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Silencing of STE20-type kinase STK25 in human aortic endothelial and smooth muscle cells is atheroprotective
  • 2022
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies highlight the importance of lipotoxic damage in aortic cells as the major pathogenetic contributor to atherosclerotic disease. Since the STE20-type kinase STK25 has been shown to exacerbate ectopic lipid storage and associated cell injury in several metabolic organs, we here investigate its role in the main cell types of vasculature. We depleted STK25 by small interfering RNA in human aortic endothelial and smooth muscle cells exposed to oleic acid and oxidized LDL. In both cell types, the silencing of STK25 reduces lipid accumulation and suppresses activation of inflammatory and fibrotic pathways as well as lowering oxidative and endoplasmic reticulum stress. Notably, in smooth muscle cells, STK25 inactivation hinders the shift from a contractile to a synthetic phenotype. Together, we provide several lines of evidence that antagonizing STK25 signaling in human aortic endothelial and smooth muscle cells is atheroprotective, highlighting this kinase as a new potential therapeutic target for atherosclerotic disease.
  •  
3.
  • Amrutkar, Manoj, et al. (författare)
  • Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model
  • 2015
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 64:8, s. 2791-2804
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the molecular networks controlling ectopic lipid deposition, glucose tolerance, and insulin sensitivity is essential to identifying new pharmacological approaches to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a negative regulator of glucose and insulin homeostasis based on observations in myoblasts with acute depletion of STK25 and in STK25-overexpressing transgenic mice. Here, we challenged Stk25 knockout mice and wild-type littermates with a high-fat diet and showed that STK25 deficiency suppressed development of hyperglycemia and hyperinsulinemia, improved systemic glucose tolerance, reduced hepatic gluconeogenesis, and increased insulin sensitivity. Stk25(-/-) mice were protected from diet-induced liver steatosis accompanied by decreased protein levels of acetyl-CoA carboxylase, a key regulator of both lipid oxidation and synthesis. Lipid accumulation in Stk25(-/-) skeletal muscle was reduced, and expression of enzymes controlling the muscle oxidative capacity (Cpt1, Acox1, Cs, Cycs, Ucp3) and glucose metabolism (Glut1, Glut4, Hk2) was increased. These data are consistent with our previous study of STK25 knockdown in myoblasts and reciprocal to the metabolic phenotype of Stk25 transgenic mice, reinforcing the validity of the results. The findings suggest that STK25 deficiency protects against the metabolic consequences of chronic exposure to dietary lipids and highlight the potential of STK25 antagonists for the treatment of type 2 diabetes.
  •  
4.
  • Amrutkar, Manoj, et al. (författare)
  • Protein kinase STK25 controls lipid partitioning in hepatocytes and correlates with liver fat content in humans
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:2, s. 341-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Type 2 diabetes is closely associated with pathological lipid accumulation in the liver, which is suggested to actively contribute to the development of insulin resistance. We recently identified serine/threonine protein kinase 25 (STK25) as a regulator of liver steatosis, whole-body glucose tolerance and insulin sensitivity in a mouse model system. The aim of this study was to assess the role of STK25 in the control of lipid metabolism in human liver. Methods Intracellular fat deposition, lipid metabolism and insulin sensitivity were studied in immortalised human hepatocytes (IHHs) and HepG2 hepatocellular carcinoma cells in which STK25 was overexpressed or knocked down by small interfering RNA. The association between STK25 mRNA expression in human liver biopsies and hepatic fat content was analysed. Results Overexpression of STK25 in IHH and HepG2 cells enhanced lipid deposition by suppressing beta-oxidation and triacylglycerol (TAG) secretion, while increasing lipid synthesis. Conversely, knockdown of STK25 attenuated lipid accumulation by stimulating beta-oxidation and TAG secretion, while inhibiting lipid synthesis. Furthermore, TAG hydrolase activity was repressed in hepatocytes overexpressing STK25 and reciprocally increased in cells with STK25 knockdown. Insulin sensitivity was reduced in STK25-overexpressing cells and enhanced in STK25-deficient hepatocytes. We also found a statistically significant positive correlation between STK25 mRNA expression in human liver biopsies and hepatic fat content. Conclusions/interpretation Our data suggest that STK25 regulates lipid partitioning in human liver cells by controlling TAG synthesis as well as lipolytic activity and thereby NEFA release from lipid droplets for beta-oxidation and TAG secretion. Our findings highlight STK25 as a potential drug target for the prevention and treatment of type 2 diabetes.
  •  
5.
  • Amrutkar, Manoj, et al. (författare)
  • Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH
  • 2015
  • Ingår i: Faseb Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 29:4, s. 1564-1576
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease, and 10% to 20% of NAFLD patients progress to nonalcoholic steatohepatitis (NASH). The molecular pathways controlling progression to NAFLD/NASH remain poorly understood. We recently identified serine/threonine protein kinase 25 (STK25) as a regulator of whole-body insulin and glucose homeostasis. This study investigates the role of STK25 in liver lipid accumulation and NASH. Stk25 transgenic mice challenged with a high-fat diet displayed a dramatic increase in liver steatosis and hepatic insulin resistance compared to wild-type siblings. Focal fibrosis, hepatocellular damage, and inflammation were readily seen in transgenic but not wild-type livers. Transgenic livers displayed reduced beta-oxidation and triacylglycerol secretion, while lipid uptake and synthesis remained unchanged. STK25 was associated with lipid droplets, colocalizing with the main hepatic lipid droplet-coating protein adipose differentiation-related protein, the level of which was increased 3.8 +/- 0.7-fold in transgenic livers (P < 0.01), while a key hepatic lipase, adipose triacylglycerol lipase, was translocated from the lipid droplets surface to the cytoplasm, providing the likely mechanism underlying the effect of STK25. In summary, STK25 is a lipid droplet-associated protein that promotes NAFLD through control of lipid release from the droplets for beta-oxidation and triacylglycerol secretion. STK25 also drives pathogenesis of NASH.
  •  
6.
  • Amrutkar, Manoj, et al. (författare)
  • STK25 is a critical determinant in nonalcoholic steatohepatitis.
  • 2016
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - 1530-6860. ; 30:10, s. 3628-3643
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and 10-20% of patients with NAFLD progress to nonalcoholic steatohepatitis (NASH) with a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Despite its high medical importance, the molecular mechanisms controlling progression from simple liver steatosis to NASH remain elusive. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid deposition, systemic glucose, and insulin homeostasis. To elucidate the role of STK25 in the development of NASH, we challenged Stk25-knockout and transgenic mice with a methionine and choline-deficient (MCD) diet. We show that Stk25(-/-) mice are protected against MCD-diet-induced NASH, as evidenced by repressed liver steatosis, oxidative damage, inflammation, and fibrosis, whereas Stk25 transgenic mice developed a more severe NASH phenotype, compared with corresponding wild-type littermates. Consistently, NASH features were suppressed in STK25-deficient human hepatocytes cultured in MCD medium, and reciprocally enhanced in STK25-overexpressing cells. We also found a significant positive correlation in human liver biopsies between STK25 expression and NASH development. The study provides evidence for multiple roles of STK25 in NASH pathogenesis and future investigations to address the potential therapeutic relevance of pharmacological STK25 inhibitors in prevention and treatment of NASH are warranted.-Amrutkar, M., Chursa, U., Kern, M., Nuñez-Durán, E., Ståhlman, M., Sütt, S., Borén, J., Johansson, B. R., Marschall, H.-U., Blüher, M., Mahlapuu, M. STK25 is a critical determinant in nonalcoholic steatohepatitis.
  •  
7.
  • Astrand, Annika, et al. (författare)
  • Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.
  • 2004
  • Ingår i: American journal of physiology. Regulatory, integrative and comparative physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 287:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P < 0.001); dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P < 0.001); light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P < 0.005)] with no significant difference in mean arterial pressure [wild type 110 +/- 0.3 vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.
  •  
8.
  • Björn, Camilla, et al. (författare)
  • Anti-infective efficacy of the lactoferrin-derived antimicrobial peptide HLR1r
  • 2016
  • Ingår i: Peptides. - : Elsevier BV. - 0196-9781 .- 1873-5169. ; 81, s. 21-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial peptides (AMPs) have emerged as a new class of drug candidates for the treatment of infectious diseases. Here we describe a novel AMP, HLR1r, which is structurally derived from the human milk protein lactoferrin and demonstrates a broad spectrum microbicidal action in vitro. The minimum concentration of HLR1r needed for killing >= 99% of microorganisms in vitro, was in the range of 3-50 mu g/ml for common Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and for the yeast Candida albicans, when assessed in diluted brain-heart infusion medium. We found that HLR1r also possesses anti-inflammatory properties as evidenced by inhibition of tumor necrosis factor alpha (TNF-alpha) secretion from human monocyte-derived macrophages and by repression of interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) secretion from human mesothelial cells, without any cytotoxic effect observed at the concentration range tested (up to 400 mu g/ml). HLR1r demonstrated pronounced anti-infectious effect in in vivo experimental models of cutaneous candidiasis in mice and of excision wounds infected with MRSA in rats as well as in an ex vivo model of pig skin infected with S. aureus. In conclusion, HLR1r may constitute a new therapeutic alternative for local treatment of skin infections. (C) 2016 Elsevier Inc. All rights reserved.
  •  
9.
  • Björn, Camilla, et al. (författare)
  • Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds
  • 2015
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier BV. - 0924-8579 .- 1872-7913. ; 45:5, s. 519-524
  • Tidskriftsartikel (refereegranskat)abstract
    • The urgent need to develop novel antimicrobial therapies has stimulated interest in antimicrobial peptides as therapeutic candidates for the treatment of infectious diseases. The aim of this study was to evaluate the anti-infectious effect of the synthetic antimicrobial peptide PXL150, formulated in hydroxypropyl cellulose (HPC) gel, on Pseudomonas aeruginosa in vitro and in an in vivo mouse model of infected burn wounds as well as to assess the in vivo safety profile of PXL150 in rats and rabbits. Minimal microbicidal concentration analysis showed prominent efficacy of PXL150 against P. aeruginosa in vitro, which was further enhanced in formulating the peptide in HPC gel. Application of 1.25, 2.5, 5, 10 and 20 mg/g PXL150 in HPC gel twice daily for four consecutive days significantly reduced bacterial counts in the burn wounds compared with non-treated or placebo-treated controls. Continuous bioluminescence measurements of the bacteria revealed a pronounced anti-infective effect already at the first day post infection by PXL150 in concentrations of >= 2.5 mg/g. In the non-clinical safety studies, PXL150 showed a favourable safety profile following repeated administration systemically and locally in rats and rabbits, respectively. In conclusion, these data support that PXL150 has the potential to be an effective and safe drug candidate for the treatment of infected burn wounds. The findings encourage the progression of PXL150 as a novel topical treatment of microbial infections.
  •  
10.
  • Boge, Lukas, 1987, et al. (författare)
  • Cubosomes for topical delivery of the antimicrobial peptide LL-37
  • 2019
  • Ingår i: European Journal of Pharmaceutics and Biopharmaceutics. - : Elsevier BV. - 1873-3441 .- 0939-6411. ; 134, s. 60-67
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the use of cubosomes for topical delivery of the antimicrobial peptide (AMP) LL-37 was investigated. Topical delivery of AMPs is of great interest for treatment of skin infections caused by bacteria, such as Staphylococcus aureus. AMP containing cubosomes were produced by three different preparation protocols and compared: (i) pre-loading, where LL-37 was incorporated into a liquid crystalline gel, which thereafter was dispersed into nanoparticles, (ii) post-loading, where LL-37 was let to adsorb onto pre-formed cubosomes, and (iii) hydrotrope-loading, where LL-37 was incorporated during the spontaneously formed cubosomes in an ethanol/glycerol monooleate mixture. Particle size and size distribution were analyzed using dynamic light scattering (DLS), liquid crystalline structure by small angle x-ray scattering (SAXS) and release of LL-37 by a fluorescamine assay. Proteolytic protection of LL-37 as well as bactericidal effect after enzyme exposure was investigated. The skin irritation potential of cubosomes was examined by an in vitro epidermis model. Finally, the bacterial killing property of the cubosomes was examined by an ex vivo pig skin wound infection model with Staphylococcus aureus. Data showed that a high loading of LL-37 induced formation of vesicles in case of cubosomes prepared by sonication (pre-loading). No release of LL-37 was observed from the cubosomes, indicating strong association of the peptide to the particles. Proteolysis studies showed that LL-37 was fully protected against enzymatic attacks while associated with the cubosomes, also denoting strong association of the peptide to the particles. As a consequence, bactericidal effect after enzyme exposure remained, compared to pure LL-37 which was subjected to proteolysis. No skin irritation potential of the cubosomes was found, thus enabling for topical administration. The ex vivo wound infection model showed that LL-37 in pre-loaded cubosomes killed bacteria most efficient.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39
Typ av publikation
tidskriftsartikel (37)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (39)
Författare/redaktör
Mahlapuu, Margit, 19 ... (39)
Cansby, Emmelie, 198 ... (26)
Marschall, Hanns-Ulr ... (16)
Borén, Jan, 1963 (13)
Caputo, Mara (13)
Ståhlman, Marcus, 19 ... (12)
visa fler...
Amrutkar, Manoj (11)
Nuñez Durán, Esther (10)
Xia, Ying (9)
Nerstedt, Annika, 19 ... (9)
Smith, Ulf, 1943 (7)
Bluher, M. (7)
Kurhe, Yeshwant (6)
Kumari, Sima (6)
Sütt, Silva (5)
Andersson, Emma, 199 ... (5)
Kumar Anand, Sumit (5)
Sihlbom, Carina, 197 ... (4)
Chursa, Urszula (4)
Olmarker, Kjell, 195 ... (4)
Håkansson, Joakim (4)
Björn, Camilla (4)
Howell, B. W. (3)
Stenfeldt, Elin (3)
Nilsson, Elin, 1983 (3)
Ekström, Lars, 1959 (3)
Kulkarni, Nagaraj M. (3)
Bäckhed, Fredrik, 19 ... (2)
Ohlsson, Claes, 1965 (2)
Soomets, Ursel (2)
Nair, Syam (2)
Johansson, Bengt R, ... (2)
Chanclón, Belén (2)
Mannerås Holm, Louis ... (2)
Blüher, Matthias (2)
Wernstedt Asterholm, ... (2)
Andersson, Christian ... (2)
Bohlooly-Yeganeh, Mo ... (2)
Henricsson, Marcus, ... (2)
Hallberg, Bengt, 195 ... (2)
Astrand, Annika (2)
Andersén, Harriet (2)
Zierath, Juleen R (2)
Wiig, Monica (2)
Mattsby-Baltzer, Ing ... (2)
Olsson, Britt-Marie (2)
Gao, Lei (2)
Porosk, Rando (2)
Magnusson, Elin (2)
Amrutkar, M (2)
visa färre...
Lärosäte
Göteborgs universitet (39)
Karolinska Institutet (7)
Uppsala universitet (3)
RISE (3)
Lunds universitet (2)
Chalmers tekniska högskola (2)
Språk
Engelska (39)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (29)
Naturvetenskap (12)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy