SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maia Filipe) "

Sökning: WFRF:(Maia Filipe)

  • Resultat 1-10 av 97
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Konold, Patrick E., et al. (författare)
  • 3D-printed sheet jet for stable megahertz liquid sample delivery at X-ray free-electron lasers
  • 2023
  • Ingår i: IUCrJ. - : International Union Of Crystallography. - 2052-2525. ; 10, s. 662-670
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.
  •  
2.
  • Konold, Patrick, et al. (författare)
  • Microsecond time-resolved X-ray scattering by utilizing MHz repetition rate at second-generation XFELs
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Detecting microsecond structural perturbations in biomolecules has wide relevance inbiology, chemistry, and medicine. Here, we show how MHz repetition rates at X-ray freeelectron lasers (XFELs) can be used to produce microsecond time-series of proteinscattering with exceptionally low noise levels of 0.001%. We demonstrate the approach byderiving new mechanistic insight into Jɑ helix unfolding of a Light-Oxygen-Voltage (LOV)photosensory domain. This time-resolved acquisition strategy is easy to implement andwidely applicable for direct observation of structural dynamics of many biochemicalprocesses. 
  •  
3.
  • Pádua, Diana, et al. (författare)
  • A SOX2 reporter system identifies gastric cancer stem-like cells sensitive to monensin
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastric cancer remains a serious health burden with few therapeutic options. Therefore, the recognition of cancer stem cells (CSCs) as seeds of the tumorigenic process makes them a prime therapeutic target. Knowing that the transcription factors SOX2 and OCT4 promote stemness, our approach was to isolate stem-like cells in human gastric cancer cell lines using a traceable reporter system based on SOX2/OCT4 activity (SORE6-GFP). Cells transduced with the SORE6-GFP reporter system were sorted into SORE6+ and SORE6– cell populations, and their biological behavior characterized. SORE6+ cells were enriched for SOX2 and exhibited CSC features, including a greater ability to proliferate and form gastrospheres in non-adherent conditions, a larger in vivo tumor initiating capability, and increased resistance to 5-fluorouracil (5-FU) treatment. The overexpression and knockdown of SOX2 revealed a crucial role of SOX2 in cell proliferation and drug resistance. By combining the reporter system with a high-throughput screening of pharmacologically active small molecules we identified monensin, an ionophore antibiotic, displaying selective toxicity to SORE6+ cells. The ability of SORE6-GFP reporter system to recognize cancer stem-like cells facilitates our understanding of gastric CSC biology and serves as a platform for the identification of powerful therapeutics for targeting gastric CSCs.
  •  
4.
  • Pádua, Diana, et al. (författare)
  • High-Throughput Drug Screening Revealed That Ciclopirox Olamine Can Engender Gastric Cancer Stem-like Cells
  • 2023
  • Ingår i: Cancers. - 2072-6694. ; 15:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer stem cells (CSCs) are relevant therapeutic targets for cancer treatment. Still, the molecular circuits behind CSC characteristics are not fully understood. The low number of CSCs can sometimes be an obstacle to carrying out assays that explore their properties. Thus, increasing CSC numbers via small molecule-mediated cellular reprogramming appears to be a valid alternative tool. Using the SORE6-GFP reporter system embedded in gastric non-CSCs (SORE6−), we performed a high-throughput image-based drug screen with 1200 small molecules to identify compounds capable of converting SORE6− to SORE6+ (CSCs). Here, we report that the antifungal agent ciclopirox olamine (CPX), a potential candidate for drug repurposing in cancer treatment, is able to reprogram gastric non-CSCs into cancer stem-like cells via activation of SOX2 expression and increased expression of C-MYC, HIF-1α, KLF4, and HMGA1. This reprogramming depends on the CPX concentration and treatment duration. CPX can also induce cellular senescence and the metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis. We also disclose that the mechanism underlying the cellular reprogramming is similar to that of cobalt chloride (CoCl2), a hypoxia-mimetic agent.
  •  
5.
  • Wiedorn, Max O., et al. (författare)
  • Megahertz serial crystallography
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a beta-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
  •  
6.
  •  
7.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
8.
  • Ayyer, Kartik, et al. (författare)
  • 3D diffractive imaging of nanoparticle ensembles using an x-ray laser
  • 2021
  • Ingår i: Optica. - : Optical Society of America. - 2334-2536. ; 8:1, s. 15-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle imaging at x-ray free electron lasers (XFELs) has the potential to determine the structure and dynamics of single biomolecules at room temperature. Two major hurdles have prevented this potential from being reached, namely, the collection of sufficient high-quality diffraction patterns and robust computational purification to overcome structural heterogeneity. We report the breaking of both of these barriers using gold nanoparticle test samples, recording around 10 million diffraction patterns at the European XFEL and structurally and orientationally sorting the patterns to obtain better than 3-nm-resolution 3D reconstructions for each of four samples. With these new developments, integrating advancements in x-ray sources, fast-framing detectors, efficient sample delivery, and data analysis algorithms, we illuminate the path towards sub-nano meter biomolecular imaging. The methods developed here can also be extended to characterize ensembles that are inherently diverse to obtain their full structural landscape. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
  •  
9.
  • Barty, Anton, et al. (författare)
  • Cheetah : software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data
  • 2014
  • Ingår i: Journal of applied crystallography. - 0021-8898 .- 1600-5767. ; 47, s. 1118-1131
  • Tidskriftsartikel (refereegranskat)abstract
    • The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License.
  •  
10.
  • Bellisario, Alfredo (författare)
  • Deep learning assisted phase retrieval and computational methods in coherent diffractive imaging
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, advances in Artificial Intelligence and experimental techniques have revolutionized the field of structural biology. X-ray crystallography and Cryo-EM have provided unprecedented insights into the structures of biomolecules, while the unexpected success of AlphaFold has opened up new avenues of investigation. However, studying the dynamics of proteins at high resolution remains a significant obstacle, especially for fast dynamics. Single-particle imaging (SPI) or Flash X-ray Imaging (FXI) is an emerging technique that may enable the mapping of the conformational landscape of biological molecules at high resolution and fast time scale. This thesis discusses the potential of SPI/FXI, its challenges, recent experimental successes, and the advancements driving its development. In particular, machine learning and neural networks could play a vital role in fostering data analysis and improving SPI/FXI data processing. In Paper I, we discuss the problem of noise and detector masks in collecting FXI data. I simulated a dataset of diffraction patterns and used it to train a Convolutional Neural Network (U-Net) to restore data by denoising and filling in detector masks. As a natural continuation of this work, I trained another machine learning model in Paper II to estimate 2D protein densities from diffraction intensities. In the final chapter, corresponding to Paper III, we discuss another experimental method, time-resolved Small Angle X-ray Scattering (SAXS), and a new algorithm recently developed for SAXS data, the DENsity from Solution Scattering (DENSS) algorithm. I discuss the potential of DENSS in time-resolved SAXS and its application for structural fitting of AsLOV2, a Light-Oxygen-Voltage (LOV) protein domain from Avena sativa.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 97
Typ av publikation
tidskriftsartikel (77)
doktorsavhandling (7)
annan publikation (6)
forskningsöversikt (3)
konferensbidrag (2)
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt/konstnärligt (17)
populärvet., debatt m.m. (2)
Författare/redaktör
Maia, Filipe R. N. C ... (65)
Hajdu, Janos (45)
Barty, Anton (36)
Svenda, Martin (30)
Ekeberg, Tomas (29)
Chapman, Henry N. (29)
visa fler...
Timneanu, Nicusor (27)
Aquila, Andrew (22)
Bielecki, Johan (22)
Bostedt, Christoph (22)
Seibert, M Marvin (20)
Marchesini, Stefano (20)
Andreasson, Jakob (19)
Hartmann, Robert (18)
Kirian, Richard A. (18)
Bajt, Saša (18)
Rudenko, Artem (17)
Rolles, Daniel (17)
Kimmel, Nils (17)
Martin, Andrew V. (16)
Liang, Mengning (16)
Foucar, Lutz (15)
Gumprecht, Lars (15)
Graafsma, Heinz (14)
Bogan, Michael J. (14)
Andersson, Inger (14)
Rudek, Benedikt (14)
White, Thomas A. (14)
DePonte, Daniel P. (14)
Epp, Sascha W. (14)
Holl, Peter (14)
Schulz, Joachim (14)
Erk, Benjamin (13)
Hantke, Max (13)
Barthelmess, Miriam (13)
Bozek, John D. (13)
Frank, Matthias (13)
Lomb, Lukas (13)
Sierra, Raymond G. (12)
Hirsemann, Helmut (12)
Shoeman, Robert L (12)
Iwan, Bianca (12)
Nettelblad, Carl (12)
Hunter, Mark S. (12)
Fromme, Petra (12)
Fleckenstein, Holger (12)
Reich, Christian (12)
Schlichting, Ilme (12)
Soltau, Heike (12)
Ullrich, Joachim (12)
visa färre...
Lärosäte
Uppsala universitet (92)
Kungliga Tekniska Högskolan (14)
Chalmers tekniska högskola (7)
Göteborgs universitet (4)
Lunds universitet (4)
Sveriges Lantbruksuniversitet (4)
visa fler...
Mittuniversitetet (2)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (97)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (79)
Medicin och hälsovetenskap (7)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy