SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maia Filipe R.N.C.) "

Sökning: WFRF:(Maia Filipe R.N.C.)

  • Resultat 1-10 av 67
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Konold, Patrick E., et al. (författare)
  • 3D-printed sheet jet for stable megahertz liquid sample delivery at X-ray free-electron lasers
  • 2023
  • Ingår i: IUCrJ. - : International Union Of Crystallography. - 2052-2525. ; 10, s. 662-670
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.
  •  
2.
  • Wiedorn, Max O., et al. (författare)
  • Megahertz serial crystallography
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a beta-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
  •  
3.
  •  
4.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
5.
  • Ayyer, Kartik, et al. (författare)
  • 3D diffractive imaging of nanoparticle ensembles using an x-ray laser
  • 2021
  • Ingår i: Optica. - : Optical Society of America. - 2334-2536. ; 8:1, s. 15-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle imaging at x-ray free electron lasers (XFELs) has the potential to determine the structure and dynamics of single biomolecules at room temperature. Two major hurdles have prevented this potential from being reached, namely, the collection of sufficient high-quality diffraction patterns and robust computational purification to overcome structural heterogeneity. We report the breaking of both of these barriers using gold nanoparticle test samples, recording around 10 million diffraction patterns at the European XFEL and structurally and orientationally sorting the patterns to obtain better than 3-nm-resolution 3D reconstructions for each of four samples. With these new developments, integrating advancements in x-ray sources, fast-framing detectors, efficient sample delivery, and data analysis algorithms, we illuminate the path towards sub-nano meter biomolecular imaging. The methods developed here can also be extended to characterize ensembles that are inherently diverse to obtain their full structural landscape. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
  •  
6.
  • Barty, Anton, et al. (författare)
  • Cheetah : software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data
  • 2014
  • Ingår i: Journal of applied crystallography. - 0021-8898 .- 1600-5767. ; 47, s. 1118-1131
  • Tidskriftsartikel (refereegranskat)abstract
    • The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License.
  •  
7.
  • Bergh, Magnus, et al. (författare)
  • Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction
  • 2008
  • Ingår i: Quarterly reviews of biophysics (Print). - 0033-5835 .- 1469-8994. ; 41:3-4, s. 181-204
  • Forskningsöversikt (refereegranskat)abstract
    • Detailed structural investigations on living cells are problematic because existing structural methods cannot reach high resolutions on non-reproducible objects. Illumination with an ultrashort and extremely bright X-ray pulse can outrun key damage processes over a very short period. This can be exploited to extend the diffraction signal to the highest possible resolution in flash diffraction experiments. Here we present an analysis or the interaction of a very intense and very short X-ray pulse with a living cell, using a non-equilibrium population kinetics plasma code with radiation transfer. Each element in the evolving plasma is modeled by numerous states to monitor changes in the atomic populations as a function of pulse length, wavelength, and fluence. The model treats photoionization, impact ionization, Auger decay, recombination, and inverse bremsstrahlung by solving rate equations in a self-consistent manner and describes hydrodynamic expansion through the ion sound speed, The results show that subnanometer resolutions could be reached on micron-sized cells in a diffraction-limited geometry at wavelengths between 0.75 and 1.5 nm and at fluences of 10(11)-10(12) photonS mu M (2) in less than 10 fs. Subnanometer resolutions could also be achieved with harder X-rays at higher fluences. We discuss experimental and computational strategies to obtain depth information about the object in flash diffraction experiments.
  •  
8.
  • Bielecki, Johan, 1982, et al. (författare)
  • Electrospray sample injection for single-particle imaging with x-ray lasers
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.
  •  
9.
  • Bielecki, Johan, et al. (författare)
  • Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources
  • 2020
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free electron lasers (XFELs) now routinely produce millijoule level pulses of x-ray photons with tens of femtoseconds duration. Such x-ray intensities gave rise to the idea that weakly scattering particles-perhaps single biomolecules or viruses-could be investigated free of radiation damage. Here, we examine elements from the past decade of so-called single particle imaging with hard XFELs. We look at the progress made to date and identify some future possible directions for the field. In particular, we summarize the presently achieved resolutions as well as identifying the bottlenecks and enabling technologies to future resolution improvement, which in turn enables application to samples of scientific interest.
  •  
10.
  • Caleman, Carl, et al. (författare)
  • Nanocrystal imaging using intense and ultrashort X-ray pulses
  • Annan publikation (populärvet., debatt m.m.)abstract
    • Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses. Such pulses may allow the imaging of single molecules, clusters or nanoparticles, but coherent flash imaging will also open up new avenues for structural studies on nano- and micro-crystalline substances. This paper addresses the potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances, and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 67
Typ av publikation
tidskriftsartikel (58)
forskningsöversikt (3)
annan publikation (2)
konferensbidrag (2)
doktorsavhandling (2)
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt/konstnärligt (5)
populärvet., debatt m.m. (1)
Författare/redaktör
Maia, Filipe R. N. C ... (65)
Hajdu, Janos (37)
Barty, Anton (30)
Ekeberg, Tomas (26)
Timneanu, Nicusor (25)
Chapman, Henry N. (25)
visa fler...
Svenda, Martin (23)
Aquila, Andrew (20)
Seibert, M Marvin (19)
Bostedt, Christoph (19)
Andreasson, Jakob (18)
Hartmann, Robert (17)
Rudenko, Artem (16)
Rolles, Daniel (16)
Martin, Andrew V. (16)
Bielecki, Johan (16)
Kirian, Richard A. (16)
Kimmel, Nils (16)
Liang, Mengning (16)
Loh, N. Duane (15)
Foucar, Lutz (14)
Bajt, Saša (14)
DePonte, Daniel P. (14)
Epp, Sascha W. (14)
Marchesini, Stefano (14)
Daurer, Benedikt J. (14)
Rudek, Benedikt (13)
White, Thomas A. (13)
Bozek, John D. (13)
Gumprecht, Lars (13)
Holl, Peter (13)
Schulz, Joachim (13)
Graafsma, Heinz (12)
Erk, Benjamin (12)
Bogan, Michael J. (12)
Andersson, Inger (12)
Shoeman, Robert L (12)
Barthelmess, Miriam (12)
Lomb, Lukas (12)
Sierra, Raymond G. (11)
Hirsemann, Helmut (11)
Fromme, Petra (11)
Fleckenstein, Holger (11)
Hampton, Christina Y ... (11)
Reich, Christian (11)
Schlichting, Ilme (11)
Soltau, Heike (11)
Ullrich, Joachim (11)
Weidenspointner, Geo ... (11)
Spence, John C. H. (11)
visa färre...
Lärosäte
Uppsala universitet (67)
Kungliga Tekniska Högskolan (12)
Chalmers tekniska högskola (6)
Göteborgs universitet (4)
Sveriges Lantbruksuniversitet (4)
Mittuniversitetet (1)
Språk
Engelska (67)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (57)
Medicin och hälsovetenskap (3)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy