SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Majerotto E.) "

Sökning: WFRF:(Majerotto E.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Accomando, E., et al. (författare)
  • Physics with e + e - linear colliders
  • 1998
  • Ingår i: Physics Reports. - 0370-1573. ; 299:1, s. 1-78
  • Tidskriftsartikel (refereegranskat)abstract
    • The physics potential of e + e - linear colliders is summarized in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, i.e. compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e + e - linear colliders and the high precision with which the properties of particles and their interactions can be analyzed, define an exciting physics program complementary to hadron machines.
  •  
2.
  • Amendola, L., et al. (författare)
  • Cosmology and fundamental physics with the Euclid satellite
  • 2018
  • Ingår i: Living Reviews in Relativity. - : Springer. - 1433-8351 .- 2367-3613. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
  •  
3.
  • Moortgat-Pick, G., et al. (författare)
  • Polarized positrons and electrons at the linear collider
  • 2008
  • Ingår i: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 460:4-5, s. 131-243
  • Forskningsöversikt (refereegranskat)abstract
    • The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy