SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maklakov Alex A) "

Sökning: WFRF:(Maklakov Alex A)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alavioon, Ghazal, et al. (författare)
  • Haploid selection within a single ejaculate increases offspring fitness
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; :30, s. 8053-8058
  • Tidskriftsartikel (refereegranskat)abstract
    • An inescapable consequence of sex in eukaryotes is the evolution of a biphasic life cycle with alternating diploid and haploid phases. The occurrence of selection during the haploid phase can have far-reaching consequences for fundamental evolutionary processes including the rate of adaptation, the extent of inbreeding depression, and the load of deleterious mutations, as well as for applied research into fertilization technology. Although haploid selection is well established in plants, current dogma assumes that in animals, intact fertile sperm within a single ejaculate are equivalent at siring viable offspring. Using the zebrafish Danio rerio, we show that selection on phenotypic variation among intact fertile sperm within an ejaculate affects offspring fitness. Longer-lived sperm sired embryos with increased survival and a reduced number of apoptotic cells, and adult male offspring exhibited higher fitness. The effect on embryo viability was carried over into the second generation without further selection and was equally strong in both sexes. Sperm pools selected by motile phenotypes differed genetically at numerous sites throughout the genome. Our findings clearly link within-ejaculate variation in sperm phenotype to offspring fitness and sperm genotype in a vertebrate and have major implications for adaptive evolution.
  •  
2.
  • Alavioon, Ghazal, et al. (författare)
  • Selection for longer lived sperm within ejaculate reduces reproductive ageing in offspring
  • 2019
  • Ingår i: Evolution Letters. - : Oxford University Press (OUP). - 2056-3744. ; 3:2, s. 198-206
  • Tidskriftsartikel (refereegranskat)abstract
    • Males produce numerous sperm in a single ejaculate that greatly outnumber their potential egg targets. Recent studies found that phenotypic and genotypic variation among sperm in a single ejaculate of a male affects the fitness and performance of the resulting offspring. Specifically, within-ejaculate sperm selection for sperm longevity increased the performance of the resulting offspring in several key life-history traits in early life. Because increased early-life reproductive performance often correlates with rapid ageing, it is possible that within-ejaculate sperm selection increases early-life fitness at the cost of accelerated senescence. Alternatively, within-ejaculate sperm selection could improve offspring quality throughout the life cycle, including reduced age-specific deterioration. We tested the two alternative hypotheses in an experimental setup using zebrafish Danio rerio. We found that within-ejaculate sperm selection for sperm longevity reduced age-specific deterioration of fecundity and offspring survival but had no effect on fertilization success in males. Remarkably, we found an opposing effect of within-ejaculate sperm selection on female fecundity, where selection for sperm longevity resulted in increased early-life performance followed by a slow decline, while females sired by unselected sperm started low but increased their fecundity with age. Intriguingly, within-ejaculate sperm selection also reduced the age-specific decline in fertilization success in females, suggesting that selection for sperm longevity improves at least some aspects of female reproductive ageing. These results demonstrate that within-ejaculate variation in sperm phenotype contributes to individual variation in animal life histories in the two sexes and may have important implications for assisted fertilization programs in livestock and humans.
  •  
3.
  • Erkosar, Berra, et al. (författare)
  • Host diet mediates a negative relationship between abundance and diversity of Drosophila gut microbiota
  • 2018
  • Ingår i: Ecology and Evolution. - : WILEY. - 2045-7758. ; 8:18, s. 9491-9502
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrient supply to ecosystems has major effects on ecological diversity, but it is unclear to what degree the shape of this relationship is general versus dependent on the specific environment or community. Although the diet composition in terms of the source or proportions of different nutrient types is known to affect gut microbiota composition, the relationship between the quantity of nutrients supplied and the abundance and diversity of the intestinal microbial community remains to be elucidated. Here, we address this relationship using replicate populations of Drosophila melanogaster maintained over multiple generations on three diets differing in the concentration of yeast (the only source of most nutrients). While a 6.5-fold increase in yeast concentration led to a 100-fold increase in the total abundance of gut microbes, it caused a major decrease in their alpha diversity (by 45-60% depending on the diversity measure). This was accompanied by only minor shifts in the taxonomic affiliation of the most common operational taxonomic units (OTUs). Thus, nutrient concentration in host diet mediates a strong negative relationship between the nutrient abundance and microbial diversity in the Drosophila gut ecosystem.
  •  
4.
  • Griffin, Robert M., et al. (författare)
  • Sex differences in adult mortality rate mediated by early-life environmental conditions
  • 2018
  • Ingår i: Ecology Letters. - : WILEY. - 1461-023X .- 1461-0248. ; 21:2, s. 235-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Variation in sex differences is affected by both genetic and environmental variation, with rapid change in sex differences being more likely due to environmental change. One case of rapid change in sex differences is human lifespan, which has become increasingly female-biased in recent centuries. Long-term consequences of variation in the early-life environment may, in part, explain such variation in sex differences, but whether the early-life environment mediates sex differences in life-history traits is poorly understood in animals. Combining longitudinal data on 60 cohorts of pre-industrial Finns with environmental data, we show that the early-life environment is associated with sex differences in adult mortality and expected lifespan. Specifically, low infant survival rates and high rye yields (an important food source) in early-life are associated with female-bias in adult lifespan. These results support the hypothesis that environmental change has the potential to affect sex differences in life-history traits in natural populations of long-lived mammals.
  •  
5.
  • Lind, Martin I., Dr, et al. (författare)
  • Experimentally reduced insulin/IGF‐1 signaling in adulthood extends lifespan of parents and improves Darwinian fitness of their offspring
  • 2019
  • Ingår i: Evolution Letters. - : Oxford University Press (OUP). - 2056-3744. ; 3:2, s. 207-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Classical theory maintains that ageing evolves via energy trade-offs between reproduction and survival leading to accumulation of unrepaired cellular damage with age. In contrast, the emerging new theory postulates that ageing evolves because of deleterious late-life hyper-function of reproduction-promoting genes leading to excessive biosynthesis in late-life. The hyper-function theory uniquely predicts that optimizing nutrient-sensing molecular signaling in adulthood can simultaneously postpone ageing and increase Darwinian fitness. Here, we show that reducing evolutionarily conserved insulin/IGF-1 nutrient-sensing signaling via daf-2 RNA interference (RNAi) fulfils this prediction in Caenorhabditis elegans nematodes. Long-lived daf-2 RNAi parents showed normal fecundity as self-fertilizing hermaphrodites and improved late-life reproduction when mated to males. Remarkably, the offspring of daf-2 RNAi parents had higher Darwinian fitness across three different genotypes. Thus, reduced nutrient-sensing signaling in adulthood improves both parental longevity and offspring fitness supporting the emerging view that suboptimal gene expression in late-life lies at the heart of ageing.
  •  
6.
  •  
7.
  • Maklakov, Alex A, et al. (författare)
  • Antagonistically pleiotropic allele increases lifespan and late-life reproduction at the cost of early-life reproduction and individual fitness
  • 2017
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : ROYAL SOC. - 0962-8452 .- 1471-2954. ; 284:1856
  • Tidskriftsartikel (refereegranskat)abstract
    • Evolutionary theory of ageing maintains that increased allocation to early-life reproduction results in reduced somatic maintenance, which is predicted to compromise longevity and late-life reproduction. This prediction has been challenged by the discovery of long-lived mutants with no loss of fecundity. The first such long-lived mutant was found in the nematode worm Caenorhabditis elegans. Specifically, partial loss-of-function mutation in the age-1 gene, involved in the nutrient-sensing insulin/insulin-like growth factor signalling pathway, confers longevity, as well as increased resistance to pathogens and to temperature stress without appreciable fitness detriment. Here, we show that the long-lived age-1(hx546) mutant has reduced fecundity and offspring production in early-life, but increased fecundity, hatching success, and offspring production in late-life compared with wild-type worms under standard conditions. However, reduced early-life performance of long-lived mutant animals was not fully compensated by improved performance in late-life and resulted in reduced individual fitness. These results suggest that the age-1(hx546) allele has opposing effects on early-life versus late-life fitness in accordance with antagonistic pleiotropy (AP) and disposable soma theories of ageing. These findings support the theoretical conjecture that experimental studies based on standing genetic variation underestimate the importance of AP in the evolution of ageing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy