SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malik Kanchiralla Fayas) "

Sökning: WFRF:(Malik Kanchiralla Fayas)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brynolf, Selma, et al. (författare)
  • Livscykelanalys av marina bränslen i Norden för 2030 och 2050
  • 2024
  • Ingår i: Sammanställning av referat från Transportforum 2024. - Linköping : Statens väg- och transportforskningsinstitut. ; , s. 350-351
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Sommaren 2023 antog International Maritime Organization (IMO) en reviderad växthusgasstrategi med målsättningen att nå nettonollutsläpp av växthusgaser från internationell sjöfart omkring 2050. För att nå detta krävs en övergång till bränslen med noll eller mycket låga utsläpp av växthusgaser (GHG) under hela deras livscykel. Det finns flera marina bränslen och framdrivningssystem som kan användas inom nordisk sjöfart i framtiden inklusive metanol, vätgas och ammoniak. De är förknippade med olika mognadsnivåer och deras tillämplighet för olika fartygstyper varierar. Vad är då potentialen för dessa olika marina bränslen (i olika framdrivningssystem) att nå låga eller noll växthusgasutsläpp i ett livscykelperspektiv och hur presterar de när det gäller andra typer av miljöpåverkan? Syftet med denna studie är att utvärdera miljöpåverkan från marina bränslen och framdrivningstekniker i Norden år 2030 med hjälp av livscykelanalys (LCA). Inkluderade bränslena är vätgas, ammoniak och metanol, samt metan, el i batterier, samt marin gasolja och flytande naturgas för jämförelse.Prospektiv livscykelanalys (LCA) används här för att uppskatta miljöpåverkan för 32 olika alternativ (kombinationer av marina bränslen och framdrivningstekniker) med potential att uppnå låg klimatpåverkan för fartyg som trafikerar Norden. Bränsleproduktionen och dess infrastruktur, transport av bränslet till fartyget, och användningen av bränslet ombord på fartyget ingår. För några typiska fartyg har också konstruktionen av framdrivningssystemet inkluderats. Fartygets skrov, däck, propeller och övriga utrymmen ingår däremot inte. Tidsperspektivet är fartygsdrift runt 2030, med utblick till 2050. Data är baserad på information som samlats in från experter i projektet, leverantörer och från litteratur och databaser. Bränsleproduktionsvägarna som utgår från biomassa eller nordisk elmix (gröna alternativ) är förknippade med lägre växthusgasutsläpp än motsvarande bränsleproduktionsvägar från naturgas med koldioxidavskiljning och lagring (CCS). Alternativ med bränsleceller har generellt lägre klimatpåverkan än 2-takts motorer, som i sin tur presterar bättre än motsvarande 4-takts motorer, vilket beror på skillnader i framdrivningsalternativens effektivitet. Olika framdrivningstekniker passar dock olika fartygstyper. I 2030-perspektivet har de biomassabaserade metanolalternativen och de batterielektriska alternativen lägst klimatpåverkan följt av de olika gröna vätgasalternativen och grön ammoniak i bränsleceller. 
  •  
2.
  • Jalo, Noor, et al. (författare)
  • Do energy efficiency networks help reduce barriers to energy efficiency? : A case study of a regional Swedish policy program for industrial SMEs
  • 2021
  • Ingår i: Renewable & sustainable energy reviews. - : Elsevier. - 1364-0321 .- 1879-0690. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved energy efficiency is one of the key elements to decouple energy-related emissions from economic growth. Since the energy management practices in small and medium-sized enterprises are underdeveloped, most of the energy efficiency potential is left untapped. Studies show that several barriers pertaining to economic, technological, and organizational systems lead to poor implementation rates of energy efficiency measures. An energy efficiency network is considered effective in overcoming these barriers and promoting energy management practices in small and medium-sized enterprises. This paper explores the role of energy efficiency networks, and specifically the role of its functions in overcoming the identified barriers from literature. This study was carried out as a multiple case study including 13 industrial small and medium-sized enterprises using semi-structured interviews with participants from companies in a Swedish regional energy efficiency network program. Results show that energy efficiency networks are effective in overcoming some of the barriers to energy efficiency implementation and that the present functions are effective in addressing some barriers faced by small and medium-sized enterprises, e.g., energy efficiency implementation barriers such as lack of time and resources. However, some barriers still remain as constraints for energy efficiency implementation, even after energy efficiency network participation.
  •  
3.
  • Kanchiralla, Fayas Malik, et al. (författare)
  • Energy End-Use Categorization and Performance Indicators for Energy Management in the Engineering Industry
  • 2020
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy efficiency (EE) improvement is one of the most crucial elements in the decarbonization of industry. EE potential within industries largely remains untapped due to the lack of information regarding potential EE measures (EEM), knowledge regarding energy use, and due to the existence of some inconsistencies in the evaluation of energy use. Classification of energy end-using processes would increase the understanding of energy use, which in turn would increase the detection and deployment of EEMs. The study presents a novel taxonomy with hierarchical levels for energy end-use in manufacturing operations for the engineering industry, analyzes processes in terms of energy end-use (EEU) and CO2 emissions, and scrutinizes energy performance indicators (EnPIs), as well as proposing potential new EnPIs that are suitable for the engineering industry. Even though the study has been conducted with a focus on the Swedish engineering industry, the study may be generalizable to the engineering industry beyond Sweden.
  •  
4.
  • Kanchiralla, Fayas Malik, et al. (författare)
  • Energy use categorization with performance indicators for the food industry and a conceptual energy planning framework
  • 2021
  • Ingår i: Applied Energy. - : Elsevier Science Ltd. - 0306-2619 .- 1872-9118. ; 304
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy efficiency improvements can enhance industrys decarbonization. A major challenge however is that the energy efficiency potential often remains untapped, due, among other things, to the lack of information on energy end-use and available energy efficiency measures. Further, this lack of information also makes the deployment of energy efficiency difficult to monitor and evaluate. The creation of a standard or taxonomy on how to categorize energy end-use for major industries would help to close this knowledge gap. This paper presents a novel taxonomy for energy end-use in the food industry, with four hierarchical levels. Further, results show that the production process utilizes two-thirds of the total energy used in the food industry and only onethird is used for support processes. Another result is that heat processing and space heating are the most intensive unit processes in terms of energy and carbon dioxide emissions for production and support processes, respectively. The paper also presents an array of energy performance indicators for the identified energy-intensive processes. The case study was carried out in the Swedish food industry. However, taxonomy and energy performance indicators can be generalized internationally. In addition to the above results, this research presents a novel concept of the energy planning framework, which helps with simple and effective planning of energy improvement activities in an industrial context. The energy planning framework can help in benchmarking, setting targets, and monitoring energy performance in the industry.
  •  
5.
  • Kanchiralla, Fayas Malik, 1989, et al. (författare)
  • How do variations in ship operation impact the techno-economic feasibility and environmental performance of fossil-free fuels? A life cycle study
  • 2023
  • Ingår i: Applied Energy. - : Elsevier Ltd. - 1872-9118 .- 0306-2619. ; 350
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying an obvious non-fossil fuel solution for all ship types for meeting the greenhouse gas reduction target in shipping is challenging. This paper evaluates the technical viability, environmental impacts, and economic feasibility of different energy carriers for three case vessels of different ship types: a RoPax ferry, a tanker, and a service vessel. The energy carriers examined include battery-electric and three electro-fuels (hydrogen, methanol, and ammonia) which are used in combination with engines and fuel cells. Three methods are used: preliminary ship design feasibility, life cycle assessment, and life cycle costing. The results showed that battery-electric and compressed hydrogen options are not viable for some ships due to insufficient available onboard space for energy storage needed for the vessel's operational range. The global warming reduction potential is shown to depend on the ship type. This reduction potential of assessed options changes also with changes in the carbon intensity of the electricity mix. Life cycle costing results shows that the use of ammonia and methanol in engines has the lowest life cycle cost for all studied case vessels. However, the higher energy conversion losses of these systems make them more vulnerable to fluctuations in the price of electricity. Also, these options have higher environmental impacts on categories like human toxicity, resource use (minerals and metals), and water use. Fuel cells and batteries are not as cost-competitive for the case vessels because of their higher upfront costs and shorter lifetimes. However, these alternatives are less expensive than alternatives with internal combustion engines in the case of higher utilization rates and fuel costs.
  •  
6.
  • Kanchiralla, Fayas Malik, 1989, et al. (författare)
  • Life-Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:17, s. 12517-12531
  • Tidskriftsartikel (refereegranskat)abstract
    • Future ships need to operate with low or possibly zero greenhouse gas (GHG) emissions while ensuring low influence on other environmental impacts and that the operation is economically feasible.This study conducts a life-cycle evaluation of potential decarbonization solutions involving selected energy carriers (electrolytic hydrogen, electro-ammonia, electro-methanol, and electricity) in different propulsion system setups (engines, fuel cells, and carbon capture technologies) in terms of environmental impact and costs.The results of the study show that the assessed decarbonization options are promising measures to reduce maritime GHG emissions with low-carbon-intensive electricity.The same order of GHG reduction is shown to be possible independent of the propulsion system and energy carrier used onboard.However, the carbon abatement cost ranges from 300 to 550 €/tCO2eq, and there is a trade-off with environmental impacts such as human toxicity (cancer and non-cancer effects) and freshwater ecotoxicity mainly linked with the wind infrastructure used for electricity production.Electro-ammonia in fuel cells is indicated to be effective in terms of the carbon abatement cost followed by the so-called HyMethShip concept.The higher abatement cost of all options compared to current options indicates that major incentives and policy measures are required to promote the introduction of alternative fuel and propulsion systems.
  •  
7.
  • Kanchiralla, Fayas Malik, 1989 (författare)
  • Life cycle navigation through future energy carriers and propulsion options for the energy transition in shipping
  • 2023
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The shipping industry's heavy reliance on fossil fuels has a detrimental effect on the global climate, human health, and the natural environment. The shipping sector now relies on the use of cheap and energy-dense heavy fuel oil and is perceived as ‘difficult-to-decarbonize’. Presently the shipping sector is adopting incremental emission reduction measures related to operational and technological energy efficiency solutions. However, to meet the global climate target, the transition from fossil-based marine fuels to renewable energy carriers is needed. Electro-fuels, which are produced from low-carbon electricity, or direct use of electricity with battery storage, are two pathways for energy transition included in this thesis. This thesis aims to assess the possible influence of the above two decarbonization paths based on energy demand, environmental performance, and economic performance across the whole life cycle of ships. The assessment is performed for hydrogen, ammonia, methanol, and battery-electric on three case study vessels using prospective life cycle assessment (pLCA) and life cycle costing (LCC). The pLCA is based on systems thinking used for the environmental assessment of emerging technologies that are in an early stage of development, and the LCC is used for the economic assessment of technologies over the life cycle based on the same systems thinking. To understand the environmental and economic tradeoffs for decision making an integrated assessment of pLCA and LCC is employed in the thesis. Considering the complexity and challenges of integration, a framework termed ‘integrated life cycle framework’ is developed for this thesis, allowing for consistent assessment to understand tradeoffs. This framework can be useful for other transport sectors. The study shows that there is a substantial potential for reducing the environmental impact of shipping through the studied pathways; however, this depends on the carbon intensity of the electricity used in fuel production. Technically, not all fuels are suitable for all vessels. Their suitability is primarily determined by the amount of fuel required for bunkering and the amount of space available onboard. Reduced climate impact comes at the expense of several other impact categories, such as human toxicity, water use, and resource use (minerals and metals). For the same type of fuel, fuel cells have greater impact reduction potential than engine options; however, engines are more cost competitive. Fuel price and utilization rate also influence cost competitiveness. The total life cycle cost of all the studied options is significantly higher than the conventional diesel option, and the critical parameter is the cost of the fuel. The cost of fuel is sensitive to the price of electricity. The carbon abatement cost estimated in this study shows that policies should be designed to imply at least a cost of 250–300 €/tCO2eq for emitting greenhouse gases to make the assessed fuel options cost competitive.
  •  
8.
  • Thaler, Bernhard, et al. (författare)
  • Optimal design and operation of maritime energy systems based on renewable methanol and closed carbon cycles
  • 2022
  • Ingår i: Energy Conversion and Management. - : Elsevier BV. - 0196-8904. ; 269
  • Tidskriftsartikel (refereegranskat)abstract
    • The phasing out of fossil fuels in the shipping sector is of key importance for reducing greenhouse gas emissions. Synthetic fuels based on renewable energy are a promising option for a sustainable maritime sector, with renewable methanol being one of the most widely considered energy carriers. However, the availability of renewable methanol is still limited and the costs associated with it are significantly higher than for conventional fuels, also because fuel synthesis must rely on carbon dioxide as a resource. Through the use of onboard carbon capture, the release of carbon dioxide during combustion can be avoided, and this closed cycle reduces the need for carbon sources. This paper investigates such a scenario by analyzing overall ship energy systems that use internal combustion engines with connected pre-combustion and post-combustion carbon capture technologies. The effect of these technologies on the techno-economic performance of a fully renewable energy system is investigated by setting up a mixed-integer optimization framework for the optimal design and operation of ship propulsion systems. The propulsion demand for the chosen case study consists of a typical operational profile of a ferry operating in the Baltic Sea. Comparison of the capture cases to a system solely based on renewable methanol reveals significant cost advantages of the closed carbon cycle systems. The baseline scenario has nearly 20% lower annual costs, with total capture rates of 90% in the post-combustion case and around 40% in the pre-combustion case. An extensive sensitivity analysis shows that these cost advantages are robust against various technological and economic boundary conditions. In the pre-combustion case, process heat demand reduction in combination with increased engine heat supply might enable higher capture rates beyond 90%. The results indicate that combining renewable fuels with onboard carbon capture creates opportunities for cost-effective, sustainable shipping.
  •  
9.
  • Thollander, Patrik, 1976-, et al. (författare)
  • Energinyckeltal och växthusgasutsläpp baserade på industrins energianvändande processer
  • 2021
  • Rapport (refereegranskat)abstract
    • Svensk industri bör strategiskt arbeta mot ökad energi- och resurseffektivitet på en global marknad med knappare resurser. I detta sammanhang spelar beslutsunderlag och nyckeltal en central roll för att nå ökad effektivitet. Även för tillsynsmyndigheter är rättvisande nyckeltal avseende slutenergianvändning av mycket stor vikt för att kunna bedriva ett rättvist förebyggande och proaktivt arbete med svenska företag. De nyckeltal som finns på internationell och nationell nivå är baserade på tillförd energi och ofta relaterade till en ekonomisk output, till exempel förädlingsvärde. Det saknas emellertid nyckeltal kring slutenergianvändningen inom svensk industri fördelat på energibärare såsom el och olja och fördelat på slutenergiprocesser såsom ugnar, tryckluftskompressorer, etc. De siffror som ibland anges är baserade på grova uppskattningar. Projektets mål har därför varit att generera ett processträd avseende flera av de största, till slutenergianvändning räknat, svenska industribranscherna avseende hur slutenergianvändningen är fördelad på processnivå och olika energibärare, samt att allokera växthusgasutsläpp på dessa olika processer. Resultaten indikerar att nyckeltal baserade på energianvändning och indirekta växthusgasutsläpp på processnivå kan bidra till bättre kunskap om i vilka industriella energianvändande processer den största potentialen för energieffektivisering och minskning av växthusgasutsläpp finns. För att upprätthålla kunskap om var den största potentialen för förbättring finns krävs att energidata regelbundet samlas in efter en standardiserad kategorisering av energianvändande processer. Även om projektet har avgränsats till svensk industri kan resultatet vara till nytta också för andra medlemsstater inom EU liksom globalt.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy