SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malinauskas A) "

Sökning: WFRF:(Malinauskas A)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kousathanas, A, et al. (författare)
  • Whole-genome sequencing reveals host factors underlying critical COVID-19
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 607:7917, s. 97-
  • Tidskriftsartikel (refereegranskat)abstract
    • Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.
  •  
2.
  •  
3.
  • de Mattos, I L, et al. (författare)
  • Development of biosensors based on hexacyanoferrates.
  • 2000
  • Ingår i: Talanta. - 1873-3573. ; 52:5, s. 791-799
  • Tidskriftsartikel (refereegranskat)abstract
    • Ferric and copper hexacyanoferrates (PB and CuHCF, respectively) were electrodeposited on glassy carbon electrodes providing a suitable catalytic surface for the amperometric detection of hydrogen peroxide. Additionally glucose oxidase was immobilized on top of these electrodes to form glucose biosensors. The biosensors were made by casting glucose oxidase-Nafion layers onto the surface of the modified electrodes. The operational stability of the films and the biosensors were evaluated by injecting a standard solution (5 muM H(2)O(2) for PB, 5 mM H(2)O(2) for CuHCF and 2.5 mM glucose for both) over 5-10 h in a flow-injection system with the electrodes polarized at -50 (PB) and -200 mV (CuHCF) versus Ag/AgCl, respectively. The glucose biosensors demonstrated suitability for glucose determination: 0.0-2.5 mM (R(2)=0.9977) for PB and 0.0-10 mM (R(2)=0.9927) for CuHCF, respectively. The visualization of the redox catalyst modifiers (PB and CuHCF films) was presented by scanning electron micrographs.
  •  
4.
  • Monemar, Bo, 1942-, et al. (författare)
  • Recombination of free and bound excitons in GaN
  • 2008
  • Ingår i: Physica status solidi. B, Basic research. - : Wiley. - 0370-1972 .- 1521-3951. ; 245:9, s. 1723-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on recent optical investigations of free and bound exciton properties in bulk GaN. In order to obtain reliable data it is important to use low defect density samples of low doping. We have used thick GaN layers (of the order of 1 mm) grown by halide vapour phase epitaxy (HVPE) with a residual doping down to <1016 cm-3 in this work. With such samples all polarisation geometries could also easily be exploited. The influence of the surface states on the photoluminescence (PL) experiments is analysed, it is concluded that surface recombination plays an important role for the free exciton (FE) recombination. The electronic structure of the FEs is discussed in detail, including the influence of spin-exchange and polariton effects, and compared with polarised PL spectra at 2 K. The detailed structure of excited states from the PL spectra is discussed, but further data are needed to fully explain all the peaks observed. The polarized FE spectra at room temperature allow a determination of the bandgap as 3.437 eV at 290 K, assuming an exciton binding energy of 25 meV. The PL transient of the A FE is very short (about 100 ps) for the no-phonon (NP) line interpreted as dominated by nonradiative surface recombination. The longitudinal-optical (LO) phonon replicas of the A FE exhibit a longer decay of about 1.4 ns at 2 K, suggested to represent the bulk lifetime of the FE. The corresponding decay time at 290 K is 9 ns in our samples, a value that might be affected by nonradiative recombination. The Si and O donor bound exciton (DBE) spectra with sharp NP lines at 3.4723 eV and 3.4714 eV respectively, are well resolved together with the so-called two-electron transitions (TETs) and several optical phonon replicas. The electronic structure of the DBE states including excited rotational states is discussed and compared with experiment. The well-resolved TET lines allow an accurate determination of the ground state binding energy of the Si donor as 30.4 meV and 33.2 meV for the O donor. The PL transients of the DBEs reveal a non-exponential decay for the NP lines. The DBE NP transient lineshape is assumed to be influenced by optical dispersion and scattering in the vicinity of exciton resonances, as well as by surface effects. The DBE decay time can most properly be deduced from the PL decay of the respective TETs and LO replicas, leading to values in the range of 1.1-1.8 ns. These values differ significantly from previous theoretical predictions, where values about two orders of magnitude shorter were obtained. A tentative discussion of the main observed features of acceptor bound excitons (ABEs), which are much less studied in GaN, is given. A decay time of about 0.9 ns for the shallowest 3.466 eV ABE is estimated, i.e. shorter than that for the shallow donor BEs. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.
  •  
5.
  • Monemar, Bo, et al. (författare)
  • Transient photoluminescence of shallow donor bound excitons in GaN
  • 2010
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 82, s. 235202-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed study of photoluminescence transients for neutral donor bound excitons (DBEs) in GaN, notably the ON donor DBE at 3.4714 eV and the SiGa DBE at 3.4723 eV. The studied samples are thick strain free nominally undoped bulk GaN samples, with a spectroscopic linewidth <0.5 meV at 2 K. The photoluminescence (PL) decay curves for these no-phonon (NP) lines are strongly nonexponential, and do not allow a proper assessment of the characteristic BE decay time. The decay of the LO-phonon replicas as well as the so-called two-electron transitions (TETs) at lower energies show a nicely exponential behavior, and allow extraction of DBE decay times of about 1.1 ns for the Si DBE and 1.8 ns for the O DBE, respectively. The initial nonexponential decay behavior of the NP lines has been studied in both the common front surface excitation-detection mode and with detection in transmission through the sample. This initial decay is explained as related to scattering processes in the near surface region, involving the DBEs and free excitons (FEs). Light scattering processes may also contribute to this complex decay shape. The DBE-LO-phonon decay does not discriminate between the O and Si DBEs because of spectral overlap involving different LO modes. The TET decays at 2 K are very different for transitions related to the DBE ground state and DBE excited states (going to p-like donor final states), for T>10 K thermalization between the DBE ground state and DBE excited states produces a common decay time. Thermalization between free and bound excitons appears to occur above about 20 K, when the DBE decay follows the FE decay. A simple two-level modeling of exciton capture and recombination for the PL decay curves of the FE and the DBEs, as commonly used in the literature, is shown to be generally inadequate. A broad PL background in the TET spectral region is suggested to be related to a radiative Auger process, where the DBEs recombine while leaving the donors ionized.
  •  
6.
  •  
7.
  • Shen, Xinyi, et al. (författare)
  • Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
  • 2023
  • Ingår i: Advanced Materials. - 0935-9648. ; 35:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskite based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in wide-bandgap perovskite solar cells remains a major hurdle for realizing efficient and stable perovskite tandem cells. Here, a holistic approach to overcoming challenges in 1.8 eV perovskite solar cells is reported by engineering the perovskite crystallization pathway by means of chloride additives. In conjunction with employing a self-assembled monolayer as the hole-transport layer, an open-circuit voltage of 1.25 V and a power conversion efficiency of 17.0% are achieved. The key role of methylammonium chloride addition is elucidated in facilitating the growth of a chloride-rich intermediate phase that directs crystallization of the desired cubic perovskite phase and induces more effective halide homogenization. The as-formed 1.8 eV perovskite demonstrates suppressed halide segregation and improved optoelectronic properties.
  •  
8.
  • Garjonyte, R, et al. (författare)
  • Investigation of electrochemical properties of FMN and FAD adsorbed on titanium electrode
  • 2003
  • Ingår i: Bioelectrochemistry. - 1878-562X. ; 61:1-2, s. 39-49
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrochemical properties (such as the values of the formal potentials, the dependence of the formal potentials on solution pH, the reversibility of the electrochemical process) of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) adsorbed on a titanium electrode were dependent on the electrolyte. The formal potentials of adsorbed FMN and FAD in phosphate, HEPES and PIPES buffers at pH 7 were similar to those for dissolved flavins (−460 to −480 mV vs. SCE) and changed linearly with a slope of about 52 mV per pH unit in the pH region 3 to 8. In TRIS buffer, the formal potentials of adsorbed FMN and FAD were also pH-dependent, however, with invariance in the pH range 4.5 to 5.5. In non-buffered solutions (KCl, LiCl, NaCl, CsCl, CaCl2, Na2SO4 at different concentrations), the electrochemical behavior of adsorbed FMN and FAD differed from that of dissolved flavins and was dependent on the electrolyte (especially at pH 4.5 and pH 5). Under certain conditions (electrolyte, concentration, pH), a two-step oxidation of FMN could be observed
  •  
9.
  • Jarasiunas, K., et al. (författare)
  • Optical characterization of defect-related carrier recombination and transport features in GaN substrates and CVD diamonds
  • 2009
  • Ingår i: Materials Science Forum, Vols. 600-603. ; , s. 1301-1304
  • Konferensbidrag (refereegranskat)abstract
    • Defect related carrier recombination and transport properties have been investigated in differently doped HVPE GaN substrates and CVD diamond layers. Carrier generation by interband transitions or by deep-defect photoexcitation were realized for studies of GaN samples by using picosecond pulses at 351 nm or 527 nm. This allowed to create favorable conditions for radiative and nonradiative recombination in the crystals and reveal peculiarities of photoelectrical properties of high and low density plasma in undoped, doped, and compensated GaN. In CVD diamonds, carrier diffusion length was found equal to ~ 0.5 �m and non-dependent on nitrogen density, while the carrier lifetime varied from 0.2 to 0.6 ns.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy