SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malliaras George G) "

Sökning: WFRF:(Malliaras George G)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
2.
  • Berggren, Magnus, 1968-, et al. (författare)
  • How conducting polymer electrodes operate
  • 2019
  • Ingår i: Science. - Washington, DC, United States : American Association for the Advancement of Science (A A A S). - 0036-8075 .- 1095-9203. ; 364:6437, s. 233-234
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • n/a
  •  
3.
  • Bernard, Christophe, et al. (författare)
  • Organic Bioelectronics for Interfacing with the Brain
  • 2016
  • Ingår i: The WSPC Reference on Organic Electronics: Organic Semiconductors. - : World Scientific. - 9789814699228 ; , s. 345-368
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding how the brain works represents probably the most important fundamental endeavor of humankind and holds the key for the development of new technologies that can help improve the lives of people suffering from neurological conditions such as epilepsy and Parkinson's disease. Over the past decade, the use of organic electronic devices to interface with the biological world has received a great deal of attention and bloomed into a field now called “organic bioelectronics”. One of the key differences of organic from traditional electronic materials is their capacity to exchange ions with electrolytes. We discuss how this property can be leveraged to design new types of devices that interface with the brain.Read 
  •  
4.
  • Donahue, Mary, et al. (författare)
  • Tailoring PEDOT properties for applications in bioelectronics
  • 2020
  • Ingår i: Materials science & engineering. R, Reports. - : Elsevier. - 0927-796X .- 1879-212X. ; 140
  • Tidskriftsartikel (refereegranskat)abstract
    • Resulting from its wide range of beneficial properties, the conjugated conducting polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) is a promising material in a number of emerging applications. These material properties, particularly promising in the field of bioelectronics, include its well‐known high‐degree of mechanical flexibility, stability, and high conductivity. However, perhaps the most advantageous property is its ease of fabrication: namely, low‐cost and straight‐forward deposition processes. PEDOT processing is generally carried out at low temperatures with simple deposition techniques, allowing for significant customization of the material properties through, as highlighted in this review, both process parameter variation and the addition of numerous additives. Here we aim to review the role of PEDOT in addressing an assortment of mechanical and electronic requirements as a function of the conditions used to cast or polymerize the films, and the addition of additives such as surfactants and secondary dopants. Contemporary bioelectronic research examples investigating and utilizing the effects of these modifications will be highlighted.
  •  
5.
  • Guex, Anne Geraldine, et al. (författare)
  • Highly porous scaffolds of PEDOT:PSS for bone tissue engineering
  • 2017
  • Ingår i: Acta Biomaterialia. - : ELSEVIER SCI LTD. - 1742-7061 .- 1878-7568. ; 62, s. 91-101
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6 +/- 5.9 mu m and a total pore surface area of 7.72 +/- 1.7 m(2).g(-1). The electrical conductivity, based on I-V curves, was measured to be 140 mu S.cm(-1) with a reduced, but stable conductivity of 6.1 mu S.cm(-1) after 28 days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4 weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Statement of Significance Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold based on PEDOT:PSS, and provide evidence that this purely synthetic material is a promising candidate for bone tissue engineering. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd.
  •  
6.
  • Jonsson, Amanda, et al. (författare)
  • Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:34, s. 9440-9445
  • Tidskriftsartikel (refereegranskat)abstract
    • Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional “neural pixel” creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents.
  •  
7.
  • Keene, Scott T., et al. (författare)
  • Exploiting mixed conducting polymers in organic and bioelectronic devices
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 24:32, s. 19144-19163
  • Forskningsöversikt (refereegranskat)abstract
    • Efficient transport of both ionic and electronic charges in conjugated polymers (CPs) has enabled a wide range of novel electrochemical devices spanning applications from energy storage to bioelectronic devices. In this Perspective, we provide an overview of the fundamental physical processes which underlie the operation of mixed conducting polymer (MCP) devices. While charge injection and transport have been studied extensively in both ionic and electronic conductors, translating these principles to mixed conducting systems proves challenging due to the complex relationships among the individual materials properties. We break down the process of electrochemical (de)doping, the basic feature exploited in mixed conducting devices, into its key steps, highlighting recent advances in the study of these physical processes in the context of MCPs. Furthermore, we identify remaining challenges in further extending fundamental understanding of MCP-based device operation. Ultimately, a deeper understanding of the elementary processes governing operation in MCPs will drive the advancement in both materials design and device performance.
  •  
8.
  • Nilsson, David, 1972- (författare)
  • An Organic Electrochemical Transistor for Printed Sensors and Logic
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Conducting polymers entered the research field in late 70´s and efforts aimed at achieving printed electronics started a decade later. This thesis treats printable organic electrochemical transistors (OECT). Some conjugated polymers can be switched between a high conducting and a low conducting state in an electrochemical cell. In this thesis, the work carried out using poly(3,4-ethylenedioxythiophene) (PEDOT) as the active material in an electrochemical transistor is reported. The electrochemical transistors, presented, can be designed into a bi-stable and dynamic mode of operation. These transistors operates at voltages below 2V and current on/off ratios are typically 5000, but 105 have been reached. The transistor device can be built up from all-organic materials using common printing techniques such as with screen-printing. The bi-stable transistor can be combined with an electrochromic (EC) display cell to form a smart pixel circuit. Combining several of these smart pixels yield an actively addressed cross-point matrix display. From this an all-organic active matrix display printable on paper has been achieved. The OECT, combined with a resistor network was successfully used in inverter and logic circuits.One important feature of these organic electrochemical devices is that both ions and electrons are used as the charge (signal) carriers. This is of particular interest and importance for chemical sensors. By combining a proton-conducting electrolyte (Nafion®) that changes its conductivity upon exposure to humidity, a simple OECT humidity sensor was achieved. This proves the use of this OECT as the ion-to-electron transducer.
  •  
9.
  • Rivnay, Jonathan, et al. (författare)
  • Organic electrochemical transistors
  • 2018
  • Ingår i: NATURE REVIEWS MATERIALS. - : NATURE PUBLISHING GROUP. - 2058-8437. ; 3:2
  • Forskningsöversikt (refereegranskat)abstract
    • Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.
  •  
10.
  • Strakosas, Xenofon, et al. (författare)
  • Biostack : Nontoxic Metabolite Detection from Live Tissue
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increasing demand for direct in situ metabolite monitoring from cell cultures and in vivo using implantable devices. Electrochemical biosensors are commonly preferred due to their low-cost, high sensitivity, and low complexity. Metabolite detection, however, in cultured cells or sensitive tissue is rarely shown. Commonly, glucose sensing occurs indirectly by measuring the concentration of hydrogen peroxide, which is a by-product of the conversion of glucose by glucose oxidase. However, continuous production of hydrogen peroxide in cell media with high glucose is toxic to adjacent cells or tissue. This challenge is overcome through a novel, stacked enzyme configuration. A primary enzyme is used to provide analyte sensitivity, along with a secondary enzyme which converts H2O2 back to O-2. The secondary enzyme is functionalized as the outermost layer of the device. Thus, production of H2O2 remains local to the sensor and its concentration in the extracellular environment does not increase. This "biostack" is integrated with organic electrochemical transistors to demonstrate sensors that monitor glucose concentration in cell cultures in situ. The "biostack" renders the sensors nontoxic for cells and provides highly sensitive and stable detection of metabolites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy