SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malliaras George Professor) "

Sökning: WFRF:(Malliaras George Professor)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hamedi, Mahiar (författare)
  • Organic electronics on micro and nano fibers : from e-textiles to biomolecular nanoelectronics
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Research in the field of conjugated polymers (CPs) has led to the emergence of a number of interesting research areas and commercial applications, including solar cells, flexible displays, printed electronics, biosensors, e-textiles and more.Some of the advantages of organic electronics materials, as compared to their inorganic counterparts, include high elasticity, and mechanical flexibility, which allows for a natural integration of CPs into fabrics, making them ideal for e-texile. In this thesis, a novel approach for creating transistors is presented, through the construction of electrolyte gated transistors, directly embedded on functional textile fibers. Furthermore theoretical and experimental results of the integration of functional woven devices based on these transistors are shown. The realization of woven digital logic and design schemes for devices that can be placed inside living tissue, for applications such as neural communication, are demonstrated.Reducing feature sizes in organic electronics is necessity just as in conventional microelectronics, where Moore's law has been the most impressive demonstration of this over the past decades. Here the scheme of self-assembly (SA) of biomolecular/CP hybrid nano-structures is used for creating nano electronics. It is demonstrated that proteins in the form of amyloid fibrils can be coated with the highly conducting polythiophene derivative (PEDOT-S) through molecular self-assembly in water, to form conducting nanowire networks and nanodevices at molecular dimensions. In a second SA scheme, large area patterning of connected micro-nano lines and nano transistors from the conducting polymer PEDOT-S is demonstrated through assembly of these from fluids using soft lithography. Thereby the problems of large area nano patterning, and nano registration are solved for organic electronics. The construction of functional nanoscopic materials and components through molecular self-assembly has the potential to deliver totally new concepts, and may eventually allow cheap mass production of complex three dimensional nano electronic materials and devices.
  •  
2.
  • Zeglio, Erica, 1987- (författare)
  • Self-doped Conjugated Polyelectrolytes for Bioelectronics Applications
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Self-doped conjugated polyelectrolytes (CPEs) are a class of conducting polymers constituted of a π-conjugated backbone and charged side groups. The ionic groups provide the counterions needed to balance the charged species formed in the CPEs backbones upon oxidation. As a result, addition of external counterions is not required, and the CPEs can be defined as selfdoped. The combination of their unique optical and electrical properties render them the perfect candidates for optoelectronic applications. Additionally, their “soft” nature provide for the mechanical compatibility necessary to interface with biological systems, rendering them promising materials for bioelectronics applications. CPEs solubility, aggregation state, and optoelectronic properties can be easily tuned by different means, such as blending or interaction with oppositely charged species (such as surfactants), in order to produce materials with the desired properties. In this thesis both the strategies have been explored to produce new functional materials that can be deposited to form a thin film and,  therefore, used as an active layer in organic electrochemical transistors (OECTs). Microstructure formation of the films as well as influence on devices operation and performance have been investigated. We also show that these methods can be exploited to produce materials whose uniquecombination of self-doping ability and hydrophobicity allows incorporation into the phospholipid double layer of biomembranes, while retaining their properties. As a result, self-doped CPEs can be used both as sensing elements to probe the physical state of biomembranes, and as functional ones providing them with new functionalities, such as electrical conductivity. Integration of conductive electronic biomembranes into OECTs devices has brought us one step forward on the interface of manmade technologies with biological systems.
  •  
3.
  • Keene, Scott T., et al. (författare)
  • Exploiting mixed conducting polymers in organic and bioelectronic devices
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 24:32, s. 19144-19163
  • Forskningsöversikt (refereegranskat)abstract
    • Efficient transport of both ionic and electronic charges in conjugated polymers (CPs) has enabled a wide range of novel electrochemical devices spanning applications from energy storage to bioelectronic devices. In this Perspective, we provide an overview of the fundamental physical processes which underlie the operation of mixed conducting polymer (MCP) devices. While charge injection and transport have been studied extensively in both ionic and electronic conductors, translating these principles to mixed conducting systems proves challenging due to the complex relationships among the individual materials properties. We break down the process of electrochemical (de)doping, the basic feature exploited in mixed conducting devices, into its key steps, highlighting recent advances in the study of these physical processes in the context of MCPs. Furthermore, we identify remaining challenges in further extending fundamental understanding of MCP-based device operation. Ultimately, a deeper understanding of the elementary processes governing operation in MCPs will drive the advancement in both materials design and device performance.
  •  
4.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy