SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mallik Azim U.) "

Sökning: WFRF:(Mallik Azim U.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harper, Karen A., et al. (författare)
  • Edge influence on vegetation at natural and anthropogenic edges of boreal forests in Canada and Fennoscandia
  • 2015
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 103:3, s. 550-562
  • Tidskriftsartikel (refereegranskat)abstract
    • Although anthropogenic edges are an important consequence of timber harvesting, edges due to natural disturbances or landscape heterogeneity are also common. Forest edges have been well studied in temperate and tropical forests, but less so in less productive, disturbance-adapted boreal forests. We synthesized data on forest vegetation at edges of boreal forests and compared edge influence among edge types (fire, cut, lake/wetland; old vs. young), forest types (broadleaf vs. coniferous) and geographic regions. Our objectives were to quantify vegetation responses at edges of all types and to compare the strength and extent of edge influence among different types of edges and forests. Research was conducted using the same general sampling design in Alberta, Ontario and Quebec in Canada, and in Sweden and Finland. We conducted a meta-analysis for a variety of response variables including forest structure, deadwood abundance, regeneration, understorey abundance and diversity, and non-vascular plant cover. We also determined the magnitude and distance of edge influence (DEI) using randomization tests. Some edge responses (lower tree basal area, tree canopy and bryophyte cover; more logs; higher regeneration) were significant overall across studies. Edge influence on ground vegetation in boreal forests was generally weak, not very extensive (DEI usually <20m) and decreased with time. We found more extensive edge influence at natural edges, at younger edges and in broadleaf forests. The comparison among regions revealed weaker edge influence in Fennoscandian forests.Synthesis. Edges created by forest harvesting do not appear to have as strong, extensive or persistent influence on vegetation in boreal as in tropical or temperate forested ecosystems. We attribute this apparent resistance to shorter canopy heights, inherent heterogeneity in boreal forests and their adaptation to frequent natural disturbance. Nevertheless, notable differences between forest structure responses to natural (fire) and anthropogenic (cut) edges raise concerns about biodiversity implications of extensive creation of anthropogenic edges. By highlighting universal responses to edge influence in boreal forests that are significant irrespective of edge or forest type, and those which vary by edge type, we provide a context for the conservation of boreal forests.
  •  
2.
  • Ma, Jin-Ze, et al. (författare)
  • Environmental Together With Interspecific Interactions Determine Bryophyte Distribution in a Protected Mire of Northeast China
  • 2020
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Question: What environmental variables and plant–plant interactions affect mire bryophyte distribution and does the surrounding landscape with human disturbance play a role in the mire bryophyte distribution?Location: Jinchuan mire, Northeast China.Methods: We studied the spatial distribution of bryophytes in 100 1 × 1 m quadrats in the mire. Spatial variables were simulated by analysis of the distance-based Moran’s eigenvector maps (dbMEM). Variation partitioning analysis was used to reveal the relative contribution of spatial and environmental variables to bryophytes. The relationship between environmental variables and bryophytes was tested by redundancy analysis (RDA). We used co-occurrence and niche overlap models to detect interactions among bryophytes. We also studied the influence of the surrounding landscape on the distribution of bryophytes in relation to water chemistry.Results: The eight bryophytes occupying part of the mire had both a general distribution trend and a local spatial structure. Over 40% of the total variation in cover among bryophytes could be explained by spatial and environmental variables. In this fraction, the environmental variables explained 29.7% of the variation, of which only 4.5% was not spatially structured. RDA showed the contribution of dwarf shrub cover (SC), Na, and P to the bryophyte distribution was relatively large. Concentration of Na and SC decreased gradually from north to south, and contributed most to the variation in species composition along the first axis. The concentrations of P decreased from east to west, and contributed along the second axis. All the bryophyte species were spatially isolated but with large niche overlaps, indicating that the bryophyte community was structured by interspecific competition.Conclusion: Sodium mainly originating from the volcanic hill and P from the paddy fields were the main environmental factors affecting the bryophyte distribution. Concentrations of Na and P showed spatial structure, and resulted in induced spatial dependence (ISD) playing a major role in the spatial structure of the bryophyte community. Dwarf shrubs affected by nutrient distribution in the mire significantly influenced the bryophyte distribution in the mire. We conclude that the surrounding ecosystems had important influence on bryophyte distribution via nutrient influx. Furthermore, competitive interactions exacerbated the spatial separation of bryophytes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy