SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malnes Eirik) "

Sökning: WFRF:(Malnes Eirik)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jawak, Shridhar D., et al. (författare)
  • SIOS's Earth Observation (EO), Remote Sensing (RS), and Operational Activities in Response to COVID-19
  • 2021
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Svalbard Integrated Arctic Earth Observing System (SIOS) is an international partnership of research institutions studying the environment and climate in and around Svalbard. SIOS is developing an efficient observing system, where researchers share technology, experience, and data, work together to close knowledge gaps, and decrease the environmental footprint of science. SIOS maintains and facilitates various scientific activities such as the State of the Environmental Science in Svalbard (SESS) report, international access to research infrastructure in Svalbard, Earth observation and remote sensing services, training courses for the Arctic science community, and open access to data. This perspective paper highlights the activities of SIOS Knowledge Centre, the central hub of SIOS, and the SIOS Remote Sensing Working Group (RSWG) in response to the unprecedented situation imposed by the global pandemic coronavirus (SARS-CoV-2) disease 2019 (COVID-19). The pandemic has affected Svalbard research in several ways. When Norway declared a nationwide lockdown to decrease the rate of spread of the COVID-19 in the community, even more strict measures were taken to protect the Svalbard community from the potential spread of the disease. Due to the lockdown, travel restrictions, and quarantine regulations declared by many nations, most physical meetings, training courses, conferences, and workshops worldwide were cancelled by the first week of March 2020. The resumption of physical scientific meetings is still uncertain in the foreseeable future. Additionally, field campaigns to polar regions, including Svalbard, were and remain severely affected. In response to this changing situation, SIOS initiated several operational activities suitable to mitigate the new challenges resulting from the pandemic. This article provides an extensive overview of SIOS's Earth observation (EO), remote sensing (RS) and other operational activities strengthened and developed in response to COVID-19 to support the Svalbard scientific community in times of cancelled/postponed field campaigns in Svalbard. These include (1) an initiative to patch up field data (in situ) with RS observations, (2) a logistics sharing notice board for effective coordinating field activities in the pandemic times, (3) a monthly webinar series and panel discussion on EO talks, (4) an online conference on EO and RS, (5) the SIOS's special issue in the Remote Sensing (MDPI) journal, (6) the conversion of a terrestrial remote sensing training course into an online edition, and (7) the announcement of opportunity (AO) in airborne remote sensing for filling the data gaps using aerial imagery and hyperspectral data. As SIOS is a consortium of 24 research institutions from 9 nations, this paper also presents an extensive overview of the activities from a few research institutes in pandemic times and highlights our upcoming activities for the next year 2021. Finally, we provide a critical perspective on our overall response, possible broader impacts, relevance to other observing systems, and future directions. We hope that our practical services, experiences, and activities implemented in these difficult times will motivate other similar monitoring programs and observing systems when responding to future challenging situations. With a broad scientific audience in mind, we present our perspective paper on activities in Svalbard as a case study.
  •  
2.
  •  
3.
  • Riseth, Jan Åge, et al. (författare)
  • Sámi traditional ecological knowledge as a guide to science : snow, ice and reindeer pasture facing climate change
  • 2011
  • Ingår i: Polar Record. - : Cambridge University Press. - 0032-2474 .- 1475-3057. ; 47:3, s. 202-217
  • Tidskriftsartikel (refereegranskat)abstract
    • Scientific studies of challenges of climate change could be improved by including other sources of knowledge, such as traditional ecological knowledge (TEK), in this case relating to the Sámi. This study focuses on local variations in snow and ice conditions, effects of the first durable snow, and long term changes in snow and ice conditions as pre-requisites for understanding potential future changes. Firstly, we characterised snow types and profiles based on Sámi categories and measured their density and hardness. Regression analysis showed that density can explain much of the variation in hardness, while snow depth was not significantly correlated with hardness. Secondly, we found that whether it is dry/cold or warm/wet around the fall of the first durable snow is, according to Sámi reindeer herders, crucial information for forecasting winter grazing conditions, but this has had limited focus within science. Thirdly, elderly herders’ observations of changes in snow and ice conditions by ‘reading nature’ can aid reinterpretation of meteorological data by introducing researchers to alternative perspectives. In conclusion we found remarkable agreement between scientific measurements and Sámi terminology.We also learnt that TEK/science cooperation has much potential for climate change studies, though time and resources are needed to bridge the gap between knowledge systems. In particular, TEK attention to shifts in nature can be a useful guide for science.
  •  
4.
  • Vickers, Hannah, et al. (författare)
  • A compilation of snow cover datasets for Svalbard : A multi-sensor, multi-model study
  • 2021
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable and accurate mapping of snow cover are essential in applications such as water resource management, hazard forecasting, calibration and validation of hydrological models and climate impact assessments. Optical remote sensing has been utilized as a tool for snow cover monitoring over the last several decades. However, consistent long-term monitoring of snow cover can be challenging due to differences in spatial resolution and retrieval algorithms of the different generations of satellite-based sensors. Snow models represent a complementary tool to remote sensing for snow cover monitoring, being able to fill in temporal and spatial data gaps where a lack of observations exist. This study utilized three optical remote sensing datasets and two snow models with overlapping periods of data coverage to investigate the similarities and discrepancies in snow cover estimates over Nordenskiöld Land in central Svalbard. High-resolution Sentinel-2 observations were utilized to calibrate a 20-year MODIS snow cover dataset that was subsequently used to correct snow cover fraction estimates made by the lower resolution AVHRR instrument and snow model datasets. A consistent overestimation of snow cover fraction by the lower resolution datasets was found, as well as estimates of the first snow-free day (FSFD) that were, on average, 10–15 days later when compared with the baseline MODIS estimates. Correction of the AVHRR time series produced a significantly slower decadal change in the land-averaged FSFD, indicating that caution should be exercised when interpreting climate-related trends from earlier lower resolution observations. Substantial differences in the dynamic characteristics of snow cover in early autumn were also present between the remote sensing and snow model datasets, which need to be investigated separately. This work demonstrates that the consistency of earlier low spatial resolution snow cover datasets can be improved by using current-day higher resolution datasets.
  •  
5.
  • Vickers, Hannah, et al. (författare)
  • An analysis of winter rain-on-snow climatology in Svalbard
  • 2024
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media S.A.. - 2296-6463. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Rain-on-snow (ROS) events are becoming an increasingly common feature of the wintertime climate Svalbard in the High Arctic due to a warming climate. Changes in the frequency, intensity, and spatial distribution of wintertime ROS events in Svalbard are important to understand and quantify due their wide-ranging impacts on the physical environment as well as on human activity. Due to the sparse nature of ground observations across Svalbard, tools for mapping and long-term monitoring of ROS events over large spatial areas are reliant on remote sensing, snow models and atmospheric reanalyses. However, different methods of identifying and measuring ROS events can often present different interpretations of ROS climatology. This study compares a recently published Synthetic Aperture Radar (SAR) based ROS dataset for Svalbard to ROS derived from two snow models and a reanalysis dataset for 2004-2020. Although the number of ROS events differs across the datasets, all datasets exhibit both similarities and differences in the geographical distribution of ROS across the largest island, Spitsbergen. Southern and western coastal areas experience ROS most frequently during the wintertime, with the early winter (November-December) experiencing overall most events compared to the spring (March-April). Moreover, we find that different temperature thresholds are required to obtain the best spatial agreement of ROS events in the model and reanalysis datasets with ground observations. The reanalysis dataset evaluated against ground observations was superior to the other datasets in terms of accuracy due to the assimilation of ground observations into the dataset. The SAR dataset consistently scored lowest in terms of its overall accuracy due to many more false detections, an issue which is most likely explained by the persistence of moisture in the snowpack following the end of a ROS event. Our study not only highlights some spatial differences in ROS frequency and trends but also how comparisons between different datasets can confirm knowledge about the climatic variations across Svalbard where in-situ observations are sparse.
  •  
6.
  • Zdanowicz, Christian, 1966-, et al. (författare)
  • An agenda for the future of Arctic snow research : the view from Svalbard
  • 2024
  • Ingår i: Polar Research. - : Norwegian Polar Institute. - 0800-0395 .- 1751-8369. ; 42
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic region is warming at over twice the mean rate of the Northern Hemisphere and nearly four times faster than the globe since 1979. The local rate of warming is even higher in the European archipelago of Svalbard. This warming is transforming the terrestrial snow cover, which modulates surface energy exchanges with the atmosphere, accounts for most of the runoff in Arctic catchments and is also a transient reservoir of atmospherically deposited compounds, including pollutants. Improved observations, understanding and modelling of changes in Arctic snow cover are needed to anticipate the effects these changes will have on the Arctic climate, atmosphere, terrestrial ecosystems and socioeconomic factors. Svalbard has been an international hub of polar research for many decades and benefits from a well-developed science infrastructure. Here, we present an agenda for the future of snow research in Svalbard, jointly developed by a multidisciplinary community of experts. We review recent trends in snow research, identify key knowledge gaps, prioritize future research efforts and recommend supportive actions to advance our knowledge of present and future snow conditions pertaining to glacier mass balance, permafrost, surface hydrology, terrestrial ecology, the cycling and fate of atmospheric contaminants, and remote sensing of snow cover. This perspective piece addresses issues relevant to the circumpolar North and could be used as a template for other national or international Arctic research plans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy