SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maltais L) "

Sökning: WFRF:(Maltais L)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Maltais, F., et al. (författare)
  • Salbutamol use in relation to maintenance bronchodilator efficacy in COPD : a prospective subgroup analysis of the EMAX trial
  • 2020
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Short-acting β2-agonist (SABA) bronchodilators help alleviate symptoms in chronic obstructive pulmonary disease (COPD) and may be a useful marker of symptom severity. This analysis investigated whether SABA use impacts treatment differences between maintenance dual- and mono-bronchodilators in patients with COPD. Methods: The Early MAXimisation of bronchodilation for improving COPD stability (EMAX) trial randomised symptomatic patients with low exacerbation risk not receiving inhaled corticosteroids 1:1:1 to once-daily umeclidinium/vilanterol 62.5/25 μg, once-daily umeclidinium 62.5 μg or twice-daily salmeterol 50 μg for 24 weeks. Pre-specified subgroup analyses stratified patients by median baseline SABA use (low, < 1.5 puffs/day; high, ≥1.5 puffs/day) to examine change from baseline in trough forced expiratory volume in 1 s (FEV1), change in symptoms (Transition Dyspnoea Index [TDI], Evaluating Respiratory Symptoms-COPD [E-RS]), daily SABA use and exacerbation risk. A post hoc analysis used fractional polynomial modelling with continuous transformations of baseline SABA use covariates. Results: At baseline, patients in the high SABA use subgroup (mean: 3.91 puffs/day, n = 1212) had more severe airflow limitation, were more symptomatic and had worse health status versus patients in the low SABA use subgroup (0.39 puffs/day, n = 1206). Patients treated with umeclidinium/vilanterol versus umeclidinium demonstrated statistically significant improvements in trough FEV1 at Week 24 in both SABA subgroups (59–74 mL; p < 0.001); however, only low SABA users demonstrated significant improvements in TDI (high: 0.27 [p = 0.241]; low: 0.49 [p = 0.025]) and E-RS (high: 0.48 [p = 0.138]; low: 0.60 [p = 0.034]) scores. By contrast, significant reductions in mean SABA puffs/day with umeclidinium/vilanterol versus umeclidinium were observed only in high SABA users (high: − 0.56 [p < 0.001]; low: − 0.10 [p = 0.132]). Similar findings were observed when comparing umeclidinium/vilanterol and salmeterol. Fractional polynomial modelling showed baseline SABA use ≥4 puffs/day resulted in smaller incremental symptom improvements with umeclidinium/vilanterol versus umeclidinium compared with baseline SABA use < 4 puffs/day. Conclusions: In high SABA users, there may be a smaller difference in treatment response between dual- and mono-bronchodilator therapy; the reasons for this require further investigation. SABA use may be a confounding factor in bronchodilator trials and in high SABA users; changes in SABA use may be considered a robust symptom outcome. Funding: GlaxoSmithKline (study number 201749 [NCT03034915]).
  •  
3.
  •  
4.
  • Maltais, Anna-Karin, et al. (författare)
  • Intranasally administered Endocine™ formulated 2009 pandemic influenza H1N1 vaccine induces broad specific antibody responses and confers protection in ferrets
  • 2014
  • Ingår i: Vaccine. - : Elsevier BV. - 0264-410X .- 1873-2518. ; 32:26, s. 3307-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Influenza is a contagious respiratory disease caused by an influenza virus. Due to continuous antigenic drift of seasonal influenza viruses, influenza vaccines need to be adjusted before every influenza season. This allows annual vaccination with multivalent seasonal influenza vaccines, recommended especially for high-risk groups. There is a need for a seasonal influenza vaccine that induces broader and longer lasting protection upon easy administration. Endocine™ is a lipid-based mucosal adjuvant composed of endogenous lipids found ubiquitously in the human body. Intranasal administration of influenza antigens mixed with this adjuvant has been shown to induce local and systemic immunity as well as protective efficacy against homologous influenza virus challenge in mice. Here we used ferrets, an established animal model for human influenza virus infections, to further investigate the potential of Endocine™ as an adjuvant. Intranasal administration of inactivated pandemic H1N1/California/2009 split antigen or whole virus antigen mixed with Endocine™ induced high levels of serum hemagglutination inhibition (HI) and virus neutralization (VN) antibody titers that were also cross reactive against distant swine viruses of the same subtype. HI and VN antibody titers were already demonstrated after a single nasal immunization. Upon intratracheal challenge with a homologous challenge virus (influenza virus H1N1/The Netherlands/602/2009) immunized ferrets were fully protected from virus replication in the lungs and largely protected against body weight loss, virus replication in the upper respiratory tract and pathological changes in the respiratory tract. Endocine™ formulated vaccines containing split antigen induced higher HI and VN antibody responses and better protection from body weight loss and virus shedding in the upper respiratory tract than the Endocine™ formulated vaccine containing whole virus antigen.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy