SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mamaev Boris) "

Sökning: WFRF:(Mamaev Boris)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mamaev, Boris, et al. (författare)
  • Aerodynamic investigation of turbine cooled vane block
  • 2015
  • Ingår i: Thermal Engineering. - 0040-6015. ; 62:2, s. 97-102
  • Tidskriftsartikel (refereegranskat)abstract
    • The vane block (VB) has been investigated and it gives several important results related to test methods and calculation procedures. The vane block is characterized by a developed film and convective cooling system. Blowing tests demonstrate that there is a weak correlation between cooling type and energy loss. Superposition of these effects is true for the central part over VB height without secondary flows. Coolant discharge increases profile loss and it rises if coolant flow rate is increased. Discharge onto profile convex side through the trailing edge slot influences the most considerably. The discharge through perforation decreases the vane flow capacity and insufficiently influences onto the flow outlet angle, but the trailing edge discharge increases this angle according to loss and mixture flow rate growth. The secondary flows reduce the effect of coolant discharge, which insufficiently changes losses distribution at turbine blades tips and even decreases the secondary losses. The flow outlet angle rises significantly and we are able to calculate it only if we correct the ordinary flow model. In the area of secondary flows, the outlet angle varies insufficiently under any type of cooling. This area should be investigated additionally.
  •  
2.
  •  
3.
  • Saha, Ranjan, 1984-, et al. (författare)
  • Experimental studies of leading edge contouring influence on secondary losses in transonic turbines
  • 2012
  • Ingår i: ASME Turbo Expo 2012. - : ASME Press. - 9780791844748 ; , s. 1109-1119
  • Konferensbidrag (refereegranskat)abstract
    • An experimental study of the hub leading edge contouring using fillets is performed in an annular sector cascade to observe the influence of secondary flows and aerodynamic losses. The investigated vane is a three dimensional gas turbine guide vane (geometrically similar) with a mid-span aspect ratio of 0.46. The measurements are carried out on the leading edge fillet and baseline cases using pneumatic probes. Significant precautions have been taken to increase the accuracy of the measurements. The investigations are performed for a wide range of operating exit Mach numbers from 0.5 to 0.9 at a design inlet flow angle of 90°. Data presented include the loading, fields of total pressures, exit flow angles, radial flow angles, as well as profile and secondary losses. The vane has a small profile loss of approximately 2.5 % and secondary loss of about 1.1%. Contour plots of vorticity distributions and velocity vectors indicate there is a small influence of the vortex-structure in endwall regions when the leading edge fillet is used. Compared to the baseline case the loss for the filleted case is lower up to 13 % of span and higher from 13% to 20 % of the span for a reference condition with Mach no. of 0.9. For the filleted case, there is a small increase of turning up to 15 % of the span and then a small decrease up to 35 % of the span. Hence, there are no significant influences on the losses and turning for the filleted case. Results lead to the conclusion that one cannot expect a noticeable effect of leading edge contouring on the aerodynamic efficiency for the investigated 1st stage vane of a modern gas turbine.
  •  
4.
  • Saha, Ranjan, et al. (författare)
  • Influence of pre-history and leading edge contouring on aero-performance of a 3D nozzle guide vane
  • 2013
  • Ingår i: Proceedings of the ASME Gas Turbine India Conference -2013- ; presented at ASME 2013 Gas Turbine India Conference, December 5-6, 2013, Bangalore, India. - : ASME Press.
  • Konferensbidrag (refereegranskat)abstract
    • Experiments are conducted to investigate the effect of the pre-history in the aerodynamic performance of a threedimensional nozzle guide vane with a hub leading edge contouring. The performance is determined with two pneumatic probes (5 hole and 3 hole) concentrating mainly on the endwall. The investigated vane is a geometrically similar gas turbine vane for the first stage with a reference exit Mach number of 0.9. Results are compared for the baseline and filleted cases for a wide range of operating exit Mach numbers from 0.5 to 0.9. The presented data includes loading distributions, loss distributions, fields of exit flow angles, velocity vector and vorticity contour, as well as, mass-averaged loss coefficients. The results show an insignificant influence of the leading edge fillet on the performance of the vane. However, the pre-history (inlet condition) affects significantly in the secondary loss. Additionally, an oil visualization technique yields information about the streamlines on the solid vane surface which allows identifying the locations of secondary flow vortices, stagnation line and saddle point.
  •  
5.
  • Saha, Ranjan, 1984-, et al. (författare)
  • Influence of Prehistory and Leading Edge Contouring on Aero Performance of a Three-Dimensional Nozzle Guide Vane
  • 2014
  • Ingår i: Journal of turbomachinery. - : ASME Press. - 0889-504X .- 1528-8900. ; 136:7, s. 071014-1-071014-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments are conducted to investigate the effect of the prehistory in the aerodynamic performance of a three-dimensional nozzle guide vane with a hub leading edge contouring. The performance is determined with two pneumatic probes (five hole and three hole) concentrating mainly on the end wall. The investigated vane is a geometrically similar gas turbine vane for the first stage with a reference exit Mach number of 0.9. Results are compared for the baseline and filleted cases for a wide range of operating exit Mach numbers from 0.5 to 0.9. The presented data includes loading distributions, loss distributions, fields of exit flow angles, velocity vector, and vorticity contour, as well as mass-averaged loss coefficients. The results show an insignificant influence of the leading edge fillet on the performance of the vane. However, the prehistory (inlet condition) affects significantly in the secondary loss. Additionally, an oil visualization technique yields information about the streamlines on the solid vane surface, which allows identifying the locations of secondary flow vortices, stagnation line, and saddle point.
  •  
6.
  • Saha, Ranjan, 1984-, et al. (författare)
  • Shower Head and Trailing Edge Cooling Influence on Transonic Vane Aero Performance
  • 2014
  • Ingår i: ASME Turbo Expo 2014. - : ASME Press. - 9780791845622
  • Konferensbidrag (refereegranskat)abstract
    • An experimental investigation on a cooled nozzle guide vane has been conducted in an annular sector to quantify aerodynamic influences of shower head and trailing edge cooling. The investigated vane is a typical high pressure gas turbine vane, geometrically similar to a real engine component, operated at a reference exit Mach number of 0.89. The investigations have been performed for various coolant-to-mainstream mass-flux ratios. New loss equations are derived and implemented regarding coolant aerodynamic losses. Results lead to a conclusion that both trailing edge cooling and shower head film cooling increase the aerodynamic loss compared to an uncooled case. In addition, the trailing edge cooling has higher aerodynamic loss compared to the shower head cooling. Secondary losses decrease with inserting shower head film cooling compared to the uncooled case. The trailing edge cooling appears to have less impact on the secondary loss compared to the shower head cooling. Area-averaged exit flow angles around midspan increase for the trailing edge cooling.
  •  
7.
  • Saha, Ranjan, 1984-, et al. (författare)
  • Shower Head and Trailing Edge Cooling Influence on Transonic Vane Aero Performance
  • 2014
  • Ingår i: Journal of turbomachinery. - : ASME Press. - 0889-504X .- 1528-8900. ; 136:11, s. 111001-
  • Tidskriftsartikel (refereegranskat)abstract
    • An experimental investigation on a cooled nozzle guide vane (NGV) has been conducted in an annular sector to quantify aerodynamic influences of shower head (SH) and trailing edge (TE) cooling. The investigated vane is a typical high pressure gas turbine vane, geometrically similar to a real engine component, operated at a reference exit Mach number of 0.89. The investigations have been performed for various coolant-to-mainstream mass-flux ratios. New loss equations are derived and implemented regarding coolant aerodynamic losses. Results lead to a conclusion that both TE cooling and SH film cooling increase the aerodynamic loss compared to an uncooled case. In addition, the TE cooling has higher aerodynamic loss compared to the SH cooling. Secondary losses decrease with inserting SH film cooling compared to the uncooled case. The TE cooling appears to have less impact on the secondary loss compared to the SH cooling. Area-averaged exit flow angles around midspan increase for the TE cooling.
  •  
8.
  • Saha, Ranjan, 1984-, et al. (författare)
  • Suction and Pressure Side Film Cooling Influence on Vane Aero Performance in a Transonic Annular Cascade
  • 2013
  • Ingår i: Proceedings of the ASME Turbo Expo. - 9780791855225
  • Konferensbidrag (refereegranskat)abstract
    • An experimental study on a film cooled nozzle guide vane has been conducted in a transonic annular sector to observe the influence of suction and pressure side film cooling on aerodynamic performance. The investigated vane is a typical high pressure gas turbine vane, geometrically similar to a real engine component, operated at an exit reference Mach number of 0.89. The aerodynamic results using a five hole miniature probe are quantified and compared with the baseline case which is uncooled. Results lead to a conclusion that the aerodynamic loss is influenced substantially with the change of the cooling flow rate regardless the positions of the cooling rows. The aerodynamic loss is very sensitive to the blowing ratio and a value of blowing ratio higher than one leads to a considerable higher loss penalty. The suction side film cooling has larger influence on the aerodynamic loss compared to the pressure side film cooling. Pitch-averaged exit flow angles around midspan remain unaffected at moderate blowing ratio. The secondary loss decreases (greater decrease in the tip region compared to the hub region) with inserting cooling air for all cases compared to the uncooled case.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
konferensbidrag (4)
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Fridh, Jens (8)
Mamaev, Boris (8)
Saha, Ranjan, 1984- (7)
Fransson, Torsten (6)
Annerfeldt, Mats (4)
Laumert, Björn (2)
visa fler...
Utriainen, Esa (2)
Saha, Ranjan (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (8)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Teknik (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy